| 研究生: |
朱冠璋 Chu, Kuan-Chang |
|---|---|
| 論文名稱: |
燒結氣氛與燒結溫度對430L、410L、316L、304L不銹鋼特性之影響 Effect of Sintering Atmospheres and Temperatures on the Characteristics of 430L, 410L, 316L, 304L Stainless Steels |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 燒結不銹鋼 、燒結氣氛 、燒結溫度 、機械性質 、氮氧分析 、鹽霧試驗 |
| 外文關鍵詞: | sintered stainless steel, sintering atmosphere, sintering temperature, mechanical properties, oxygen/nitrogen analysis, salt spray test |
| 相關次數: | 點閱:99 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著汽車產業發展,愈來愈多的汽車零組件為降低成本將一般傳統的不銹鋼材改為粉末冶金方式製備,因此造就粉末冶金不銹鋼之全球需求量持續增加。許多研究透過不同製程方式來探討各種類粉末冶金之不銹鋼其機械性質與耐蝕性質,其中燒結條件之改變是眾多方法中相對具有成本優勢的一種。因此,本研究之目的為為了未來工廠量產之實際運用以及系統化的整理,來探討不同燒結氣氛與燒結溫度對於300系列與400系列不銹鋼之性質影響與差異。
本研究係以工廠量產設備成形、燒結430L、410L、316L、304L不銹鋼粉末,並系統性探討燒結溫度與不同比例之氮-氫混合燒結氣氛對燒結不銹鋼之密度、機械性質、耐蝕性質之影響,並藉以比較300系列與400系列之不銹鋼受不同燒結條件影響之差異性。
隨燒結氣氛中的氮氣比例增加,成形體燒結前後之密度變化率有遞減之趨勢。在機械性質部分,隨著氮氣含量的增加,硬度有增加的趨勢,但其延性有減少的趨勢。從組織觀察發現在含氮氣氛下燒結,燒結體之晶界上有明顯的氮化鉻析出,在晶粒內則有大量的類波來鐵組織的氮化鉻析出。然而,透過氮氧分析儀可以發現氮含量較低之燒結不銹鋼,於鹽水環境中之耐孔蝕性質較差。其中,430L與410L不銹鋼之氮含量會受燒結溫度影響較大,燒結溫度越高,不銹鋼之氮含量明顯越少,密度變化率越大;而燒結溫度不同所造成之氮含量差異為影響其機械性質與耐蝕性質之主要因素。
PM stainless steels are getting more important with the increasing demand around the world. To improve their corrosion resistance and mechanical properties many methods have been investigated. However, most of them need extra cost. Optimization of sintering process may be a promising way as considering the cost of mass production. According to the paper reviews, there are no systematic discussion about sintering process for 300 and 400 series PM stainless steels. The influences of sintering temperatures and atmospheres on microstructures, mechanical and corrosion properties of SS 430L, 410L, 316L, 304L were investigated at sintering temperature of 1150 – 1250 ℃ and atmosphere with different ratio of nitrogen and hydrogen in this study.
It was found that absorbed nitrogen in stainless steels decreased with the increase of sintering temperature and with the decrease of nitrogen in sintering atmosphere. Absorbed nitrogen would restrain the densification and the shrinkage of all stainless steel samples. Furthermore, sintering atmosphere with different nitrogen contents would affect the hardness and corrosion resistance of all stainless steel samples.
It was found that the samples sintered in the higher temperature, the samples had the lower porosity, the higher bulk density and the better ductile properties. However, the sintering temperature of 1150 – 1250 ℃ didn’t have obvious influences on the nitrogen contents absorbed in stainless steels except the SS 430L sample.
[1]朱秋龍,粉末冶金市場、材料與技術的發展,54/1, 21-38,中國鑛冶工程學會,2010。
[2] https://www.mpif.org/Newsroom/2011-6.pdf/
[3] http://www.metal-powder.net/view/26600/mpif-s-bulger full-report-on-north-american-pm/
[4] http://www.metal-powder.net/view/33922/100-years-of-stainless-steel/
[5] http://www.mpif.org/introPM/2014%20SOI.pdf/
[6]黃坤祥,粉末冶金學,中華民國粉末冶金協會,1-7,2008。
[7] R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, (1994) 27-79.
[8] 王遐,粉末製造與傳統粉末加工成形,全華科技圖書股份有限公司,60-68,1992。
[9] 黃坤祥,粉末冶金學,中華民國粉末冶金協會, 11-34,2008。
[10] 汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,97-138,1994。
[11] 黃坤祥,粉末冶金學,中華民國粉末冶金協會,137-162,2008。
[12] T.E. Evans, Film formation on stainless steel in a solphuric acid, Corrosion Science 17 (1977) 105–124.
[13] R.C. Furneaux, G.E. Thompson, G.C. Wood, The coloured film formed on stainless steel in hot chromic/sulphuric acid solution, Corrosion Science 21 (1981) 23–29.
[14] 財團法人中鋼集團教育基金會,鋼鐵材料設計與應用,中國鑛冶工程學會,2007。
[15] http://www.worldstainless.org/Files/issf/non-image-files/PDF/ The StainlessSteelFamily.pdf
[16] E. Klarand P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties, ASM International, (2007) 10.
[17] W. CHEN, Y. WU, J. SHEN, Effect of Copper and Bronze Addition on Corrosion Resistance of Alloyed 316L Stainless Steel Cladded on Plain Carbon Steel by Powder Metallurgy, J. Mater. Sci. Technol., 20 (2), (2004).
[18] D. Itzhak, P. Peied, The Effect of Cu Addition on the Corrosion Behaviour of Sintered Stainless Steel in H2SO4 Environment, Corrosion Science, 26 (1) (1986) 49-54.
[19] D. Itzhak, S. Harush, The Effect of Sn Addition on the Corrosion Behaviour of Sintered Stainless Steel in H2SO4 Environment, Corrosion Science, 25 (10) (1985) 883-888.
[20] S.H. Jeon, S.T. Kim, J.S. Kim, J.S. Kim, K.T. Kim and Y.S. Park, Effects of Copper Addition on the Precipitation of Chromium Nitrides and the Associated Pitting Corrosion Resistance of the Hyper Duplex Stainless Steels, Materials Transactions, 53 (12) (2012) 2129-2134.
[21] J. Kaziora, M. Nykiela, T. Pieczonkab, T. Marcu Puscasc, A. Molinaric, Activated sintering of P/M duplex stainless steel powders, Journal of Materials Processing Technology 157–158 (2004) 712–717.
[22] F. Velasco, J.R. Ibars, J.M. Ruiz-Román, J.M. Torralba, J.M. Ruiz-Prieto, Improving the Corrosion Resistance of Powder Metallurgy Austenitic Stainless Steels Through Infiltration, Corrosion Science, 52 (1996) 47-52.
[23] W.T. Tsai, Y.N. Wen, J.T. Lee, H.Y. Liou, Effect of Silicon Addition on the Micro-Structure and Corrosion Behavior of Sintered Stainless Steel, Surface and Coatings Technology, 34 (1988) 209 – 217.
[24] A.H. Satir-Kolorz, H.K. Feichtinger, On the Solubility of Nitrogen in Liquid Iron and Steel Alloys Using Elevated Pressure, Z. metallkde, 82 (1991) 689-697.
[25] H.S. Betrabet, K. Nishimoto, B.E. Wilde, W.A.T. Clark, Electrochemical and Microstructural Investigation of Grain Boundary Precipitation in AISI 304 Stainless Steels Containing Nitrogen, Corrosion Science, 43 (1987) 77-84.
[26] H. Baba , T. Kodama, Y. Katada, Role of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steels, Corrosion Science 44 (2002) 2393–2407.
[27] H.J. Grabke, The Role of Nitrogen in the Corrosion of lron and Steels, ISIJ International, 36 (1996) 777-786.
[28] C. Molins, J.A. Bas, J. Planas, and S.A. Ames, P/M Stainless Steel :
Types and Their Characteristics and Applications, Advances in Powder Metallurgy and Particulate Materials, MPIF, 5 (1992) 345-357.
[29] R.L. Sands, G.F. Bidmead, and D.A. Oliver, The Corrosion Resistance of Sintered Austenitic Stainless Steel, Modern Developments in Powder Metallurgy, 2 (1966) 73-83.
[30] Y. S. Lim, J. S. Kim, S. J. Ahn, H. S. Kwon,Y. Katada, The Influences of Microstructure and Nitrogen Alloying on Pitting Corrosion of Type 316L and 20wt% Mn-Substituted Type 316L Stainless Steels, Corrosion Science, 43 (2001) 53-68.
[31] C. Garcia, F. Martin, P. de Tiedra, Y. Blanco, J.M. Ruiz-Roman, M. Aparicio, Electrochemical reactivation methods applied to PM austenitic
Stainless steels sintered in nitrogen–hydrogen atmosphere, Corrosion Science, 50 (2008) 687–697.
[32] D. L. Dyke and H. D. Ambs, Powder Metallrugy Applications, Advantages and Limitations, American Society for Metals. Powder Metallurgy Committee (1983) 3.
[33] S. K. Mukherjee and G. S. Upadhyaya, Oxidation of Metals, Plenum
Press, New York, (1985) 177.
[34] C. Toennes, R. M. German, Density and Microstructure Control in a Martensitic Stainless Steel Through Enhanced Sintering, Powder Metallurgy, 24 (3) (1992) 151-157.
[35] E. Klarand, P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties, ASM International, (2007) 89.
[36] A.P. Tschiptschin, Predicting Microstructure Development During High Temperature Nitriding of Martensitic Stainless Steels Using Thermodynamic Modeling, Materials Research, 5 (2002) 257-262.
[37] N.C. Santhi Srinivas, V.V. Kutumbarao, Growth mechanism for discontinuous precipitation in a multi-component (Fe–Cr–Mn–N) system, Scripta Materialia, 51 (2004) 1105–1109.
[38] F. Vanderschaeve, R. Taillard, J. Foct, Discontinuous precipitation of Cr2N in a high nitrogen, chromium-manganese austenitic stainless
steel, Materials Science, 30 (1995) 6035-6046.
[39] C. Toennes, R.M. German, Density and Microstructure Control in a Martensitic Stainless Steel Through Enhanced Sintering, Powder Metallurgy, 24 (3) (1992) 151-157.
[40] K. Bungardt, E. Kunze, E. Horn, Untersuchungen uber den Aufbau des Systems Eisen-Chrom-Kohlenstoff, Arch. Eisenhuttenwes, 29 (1958) 193-203.
[41] E. Baerlecken, W.A. Fischer, K. Lorenz, Untersuchnggen uber das Umwandllungsverhalten, die Kerbschlagzahigket und die Neigung zur interkristallinen Korrosion von Eien-Chrom-Legierungen mit Chromgehalten bis 30%, Sathl u. Eisen 81 (1996) 768-778.
[42] E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International, (2000) 349.
[43] A. Sieverts, The Absorption of Gases by Metals, Zeitschrift für Metallkunde 21 (1929) 37-46.
[44] M. Baran, B. Shaw, A. Segall, H. Kopech, P/M Ferritic Stainless Steels for Exhaust System Components, SAE Technical Paper (1997).