| 研究生: |
謝宜珊 Hsiesh, I-shan |
|---|---|
| 論文名稱: |
MicroRNA在癌症的發展過程中會調節beta-catenin的表現與功能 MicroRNAs regulate beta-catenin expression and functions in cancer progression |
| 指導教授: |
陳玉玲
Chen, Yuh-ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 癌症發展 、微型核醣核酸 |
| 外文關鍵詞: | cancer progression, MicroRNAs |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MicroRNA (miRNA)是一種進化過程中高度保守的,內源性非編碼的小RNA,它的功能就像是基因表現的負調節器。miRNA可以廣泛的調控生物功能,例如:細胞增生、分化或是細胞凋亡。近來有研究顯示,miRNA的突變或異常表現與多種人類癌症有密切關係,同時也指出miRNA的功能可以像是腫瘤抑制基因或是致癌基因。在我們的研究當中,藉由微陣列分析技術來觀察口腔癌細胞株與正常人類口腔角質細胞的miRNA表現圖譜,找尋與口腔鱗狀上皮細胞癌相關的標的基因。在微陣列分析的結果,我們發現在正常人類口腔角質細胞當中有一些miRNAs (miR185、miR320、及miR340)表現量較口腔癌細胞株高。藉由電腦程式分析來預測這些miRNAs所調控的標的基因,結果偵測出β-catenin有可能為這三種miRNAs共同的標的基因。我們進一步的分析這些miRNAs是否能在後轉錄階段去影響β-catenin的表現,利用特定miRNA的前驅分子或特定miRNA抑制劑我們證實miR185、miR320、及miR340都能影響β-catenin蛋白質的表現量而不影響其RNA的量,而且也證實miR185、miR320、及miR340能透過結合β-catenin 3’UTR而調控β-catenin的表現,並參與在Wnt signaling pathway調節生物功能。這些結果可以更深入的幫助瞭解口腔鱗狀上皮細胞癌形成的分子機轉,同時找尋出新的口腔癌治療與診斷的分子生物標記。
MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. It could control a wide range of biological functions such as cellular proliferation, differentiation and apoptosis. Recent evidence has shown that miRNA mutations or mis-expression were correlated with various human cancers and indicated that miRNAs can function as tumor suppressors and oncogenes. In this study, we performed the miRNAs expression profiles of oral cancer cells (OC2) and normal human oral keratinocytes (NHOK) by microarray analysis. We identified several miRNA genes that were significantly differently expressed between these two cell lines. To find the possible target genes of miRNAs by using the bioinformatic tools at the miRBase target database, β-catenin was predicted to be a target of three down-regulated miRNAs (miR185, miR320 and miR340) in oral cancer cells. Computational analysis using miRanda software was also identified β-catenin as a target of these miRNAs. Furthermore, we found that expression of β-catenin is negatively regulated by these three miRNAs at a posttranscriptional level. These results may provide the useful information for the exploring of molecular mechanisms in OSCC progression and might also be powerful targets for diagnosis or treatment of OSCC in the future.
1. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America 2005;102(10):3627-32.
2. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. The New England journal of medicine 2001;345(26):1890-900.
3. O'Donnell RK, Kupferman M, Wei SJ, et al. Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005;24(7):1244-51.
4. Brinkman BM, Wong DT. Disease mechanism and biomarkers of oral squamous cell carcinoma. Curr Opin Oncol 2006;18(3):228-33.
5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843-54.
6. Hammond SM. MicroRNAs as oncogenes. Current opinion in genetics & development 2006;16(1):4-9.
7. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115(7):787-98.
8. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA (New York, NY 2004;10(12):1957-66.
9. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nature reviews 2005;6(5):376-85.
10. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & development 2001;15(20):2654-9.
11. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science (New York, NY 2001;294(5543):853-8.
12. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003;278(45):44312-9.
13. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature cell biology 2005;7(7):719-23.
14. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6(4):259-69.
15. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer research 2006;66(15):7390-4.
16. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 2002;99(24):15524-9.
17. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 2005;102(39):13944-9.
18. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435(7043):828-33.
19. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO journal 1997;16(13):3797-804.
20. Nagafuchi A, Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell regulation 1989;1(1):37-44.
21. Cowin P. Unraveling the cytoplasmic interactions of the cadherin superfamily. Proceedings of the National Academy of Sciences of the United States of America 1994;91(23):10759-61.
22. Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current opinion in genetics & development 2006;16(1):51-9.
23. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science (New York, NY 2000;287(5458):1606-9.
24. Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002;108(6):837-47.
25. Behrens J. Control of beta-catenin signaling in tumor development. Annals of the New York Academy of Sciences 2000;910:21-33; discussion -5.
26. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science (New York, NY 1998;281(5382):1509-12.
27. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398(6726):422-6.
28. Mann B, Gelos M, Siedow A, et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America 1999;96(4):1603-8.
29. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 2004;20:781-810.
30. Uzawa K, Yoshida H, Suzuki H, et al. Abnormalities of the adenomatous polyposis coli gene in human oral squamous-cell carcinoma. International journal of cancer 1994;58(6):814-7.
31. Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human molecular genetics 1992;1(4):229-33.
32. Chang KW, Lin SC, Mangold KA, et al. Alterations of adenomatous polyposis Coli (APC) gene in oral squamous cell carcinoma. International journal of oral and maxillofacial surgery 2000;29(3):223-6.
33. Morin PJ, Sparks AB, Korinek V, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science (New York, NY 1997;275(5307):1787-90.
34. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996;382(6592):638-42.
35. Polakis P. The oncogenic activation of beta-catenin. Current opinion in genetics & development 1999;9(1):15-21.
36. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proceedings of the National Academy of Sciences of the United States of America 1998;95(15):8847-51.
37. Boynton RF, Blount PL, Yin J, et al. Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proceedings of the National Academy of Sciences of the United States of America 1992;89(8):3385-8.
38. Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer research 1992;52(23):6696-8.
39. D'Amico D, Carbone DP, Johnson BE, Meltzer SJ, Minna JD. Polymorphic sites within the MCC and APC loci reveal very frequent loss of heterozygosity in human small cell lung cancer. Cancer research 1992;52(7):1996-9.
40. Bandres E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Molecular cancer 2006;5:29.
41. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435(7043):839-43.
42. O'Rourke JR, Swanson MS, Harfe BD. MicroRNAs in mammalian development and t umorigenesis. Birth Defects Res C Embryo Today 2006;78(2):172-9.
43. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 2006;9(3):189-98.
44. Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer research 2004;64(9):3087-95.
45. Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer: Current status and prospective. International journal of cancer 2007;120(5):953-60.
46. Kawasaki H, Taira K. Retraction: Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 2003;426(6962):100.
47. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120(5):635-47.
48. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. Journal of cancer research and clinical oncology 2003;129(4):199-221.
49. El-Naggar AK, Coombes MM, Batsakis JG, Hong WK, Goepfert H, Kagan J. Localization of chromosome 8p regions involved in early tumorigenesis of oral and laryngeal squamous carcinoma. Oncogene 1998;16(23):2983-7.
50. Honjo N, Gunduz M, Fukushima K, et al. Comprehensive loss of heterozygosity analysis and identification of a novel hotspot at 3p21 in salivary gland neoplasms. Otolaryngol Head Neck Surg 2007;137(1):119-25.
51. Fortin A, Guerry M, Guerry R, et al. Chromosome 11q13 gene amplifications in oral and oropharyngeal carcinomas: no correlation with subclinical lymph node invasion and disease recurrence. Clin Cancer Res 1997;3(9):1609-14.
52. Reshmi SC, Huang X, Schoppy DW, et al. Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes, chromosomes & cancer 2007;46(2):143-54.
53. Oga A, Kong G, Tae K, Lee Y, Sasaki K. Comparative genomic hybridization analysis reveals 3q gain resulting in genetic alteration in 3q in advanced oral squamous cell carcinoma. Cancer genetics and cytogenetics 2001;127(1):24-9.