簡易檢索 / 詳目顯示

研究生: 徐名瑩
Hsu, Ming-Ying
論文名稱: 使用PIC法模擬帶電離子在毛細管電泳中之遷移
Simulation of charged ion migration in capillary zone electrophoresis using particle in cell method
指導教授: 洪振益
Hung, Chen-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 91
中文關鍵詞: 毛細管電泳PIC法絕對遷移率離子遷移係數幾何外形因子
外文關鍵詞: Capillary Zone Electrophoresis (CZE), Absolute mobility, Particle in cell (PIC) method, Ionic migration factor, geometry factor
相關次數: 點閱:152下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在毛細管電泳數值模型中,一般常用來計算溶質在毛細管電泳晶片中的流動,通常使用濃度方程式。但濃度方程式並不能清楚描述不同帶電性質溶質離子之運動現象。本研究使用PIC法及Navier-Stokes方程式以絕對遷移率,描述不同電性之溶質離子,在非水溶液之毛細電泳內運動情形。由模擬結果顯示毛細管壁面電位,將會影響帶電之正負離子在電雙層中運動現象。正離子由於受到壁面負電位的影響,將會被吸引至壁面附近,而負離子因為所帶電性不同,將會被推出電雙層外。且帶正電離子之遷移速度大於帶負電離子,而提早流入分離流道。
    在毛細管電泳管道中,幾何外形會造成電滲流速度在管道交會處造成速度損失,因此定義幾何外形因子,計算電滲流在管道交會處之速度損失。此外帶電離子在毛細管電泳中,主要受到電場速度與電滲流速度之影響。本研究定義電滲流場速度與電場速度之比為離子遷移係數。當離子遷移係數大於1時,代表電滲流速度大於電場速度,帶負電離子受到電滲流速度的影響將可流入管道交會處,當離子遷移係數小於1時,代表電場速度大於電滲流速度,由於電場影響,帶負電離子將會停在交會管道出口處。由模擬結果得知:由幾何外形因子及離子遷移率,將可以得知帶負電離子是否可以進入管道交會處。
    雙T型毛細管電泳晶片是一種常見的電泳晶片幾何外形設計,雙T型管道間的距離可以控制待測溶液之流量。由模擬果得知:雙T型電泳晶片的各項尺寸及雷諾數將會影響正負帶電離子,在分離流道上的分布狀況。因此本研究找出正負帶電離子、幾何外形及雷諾數之間的關係,來設計符合實驗需求的雙T型毛細管電泳晶片。

    Traditional numerical schemes use the concentration diffusion equation to simulate the solute concentration distribution in CZE (Capillary Zone Electrophoresis) systems. However, although this equation adequately describes the diffusion of a solute liquid in such systems, it cannot describe the different motions of the differently charged solute ions. Therefore, this study employs a particle model to simulate solute ionic migration. Using the Navier-Stokes equation and the PIC (Particle in Cell) method, this study examines the absolute mobility of negatively and positively charged ions in non-aqueous solvents in a CZE system. The results show that the zeta potential on the channel wall affects the migration of the positive and negative ions in the electrical double layer (EDL) in different ways. Specifically, the positive ions accumulate at the channel wall, while the negative ions are pushed out of the EDL. Furthermore, it is shown that the positive ions migrate more rapidly than the negative ions in the injection process.
    In the current analysis, the reduction in the electroosmotic velocity caused by the geometry change as the injected flow exits the injection channel and enters the cross-section region of the microchannel is quantified using a geometry factor, defined as the ratio of the electroosmotic velocity in the cross-section region of the microchannel to that in the injection channel. Meanwhile, the relationship between the electroosmotic velocity of the charged particles and their ionic velocity is modeled using an ionic migration factor γ. In general, an ionic migration factor of1>γ indicates that the electroosmotic velocity is greater than the ionic velocity, and hence both the positively and the negatively charged ions will migrate into the cross-section region of the microchannel. However, when the ionic migration factor has a value of1<γ, ionic migration of the negatively charged ions into the cross-section will not take place. Accordingly, a series of simulations is performed to identify suitable values of the ionic migratory factor and the Reynolds number which ensure that ions of both charge types can successfully migrate into the cross-section during the injection step of the CZE process.
    The double T-type channel is one of most useful geometric form in CZE system. The quantity of test sample can be control by the distances between the two injection channels. However, the distance between two injection channel will causing variation in the electric and electroosmotic field distribution. Accordingly, this study performs a series of simulations to investigate the respective influences of the Reynolds number and the geometric variables of the CZE chip on the electroosmotic and electric field distributions in the intersection region of the chip, and therefore by implication, on the migration tendencies of negatively and positively charged ions during the injection process.

    Abstract 中文摘要 Acknowledgement Contents Contents of Figures Nomenclature Chapter One Introduction 1 1.1 Introduction 1 1.2 Capillary zone electrophoresis 1 1.3 PIC method 3 Chapter Two Theory formulation 4 2.1 Introduction 4 2.2 Basic assumptions 4 2.3 Momentum and continuity equations 4 2.4 Charge density in grid 5 2.5 External electric field 6 2.6 Electric double layer 7 2.7 Ion mobility 7 2.8 Solution procedure 9 Chapter Three Numerical scheme 14 3.1 Introduction 14 3.2 Assign ion charge to nearby grid points 14 3.3 Calculate the external electric field 14 3.4 Calculate potential caused by charge on the wall 15 3.5 Solve flow field in CZE 16 3.6 Move charged ions to new positions 20 Chapter Four Charged ion distribution in cross channel of CZE chip 25 4.1 Introduction 25 4.2 Physical properties 25 4.3 Geometry of CZE system 26 4.4 Electric field and electroosmotic flow in CZE chip 26 4.5 Ionic migration in CZE chip 27 4.6 Sample injection 28 4.7 Direction of ion migration in intersection region 29 4.8 Summary 30 Chapter Five Ionic Migration Factor in CZE chip 47 5.1 Introduction 47 5.2 Physical properties 48 5.3 Geometry of CZE system 49 5.4 Electric field and electroosmotic flow in CZE chip 49 5.5 Ionic migration factor in CZE chip 51 5.6 Summary 53 Chapter Six Ionic migration in double T-type chip 67 6.1 Introduction 67 6.2 Physical properties 67 6.3 Geometry of double T-type CZE chip 68 6.4 Electric field and electroosmotic flow in double T-type CZE chip 69 6.5 Electroosmotic flow in double T-type channel 70 6.6 Geometry factor in double T-type CZE chip 71 6.7 Ion migration in double T-type channel 72 6.8 Summary 73 Chapter Seven Conclusions and Future Studies 89 7.1 Conclusion 89 7.2 Future studies 90 Reference

    [1] H. V. Helmholtz, Wiedemanns Ann. 7, 337 ,1877.
    [2] F. Kohlrausch, Wiedemanns Ann. 62, 209 ,1897.
    [3] A. Tiselius, Nova Acta Regiae Goc. Sci. Ups. Ser. iV 4, 1 ,1930.
    [4] R. Virtamen and P. Kivalo, Suomen Kemistilehti B, 182 ,1969.
    [5] F. E. P. Mikkers, F. M. Everaerts and Th. P. E. M. Verheggen J. Chromatogr., Vol. 169, pp.11-20, 1979.
    [6] J. W. Jorgenson and K.D.,“Zone Electrophoreisis in Open-Tubular Glass Capillaries,” Lukacs, Anal. Chem, Vol.53 , pp.1298-1302., 1981.
    [7] S. Hjerten, J.-L. Liao, and K. Yao, J. Chromatogr., Vol. 387, pp. 127-138, 1987.
    [8] T. Tsuda, Analytical Chemistry, Vol. 59, pp. 521-523 , 1987.
    [9] Harrison, D. J., Manz, A., Fan, Z. and Ludi, H., “Capillary Electrophoresis and Sample Injection Ssystems Integrated on a Planar Glass Chip,” Analytical Chemistry, Vol.64 , pp. 1926-1932 ,1992.
    [10] Seiler, K.; Harrison, D. J.; Manz, A.,”Planar Glass Chips for Capillary Electrophoresis : Repetitive Sample Injection, Quantitation,Separation Efficiecy,” Analytical Chemistry, Vol.65 , pp.1481-1488, 1993.
    [11] Harrison, D. J.; Glavina, P. G.; Manz, A. Sens. Actuators, B, Vol.10 , pp. 107-116 , 1993.
    [12] Fan, Z. H.; Harrison, D. J. Analytical Chemistry,Vol.66, pp.177-184 ,1994.
    [13] Seiler, K.; Fan, Z. H.; Fluri, K.; Harrison, D. J. Analytical Chemistry, Vol.66, pp.3485-3491 ,1994.
    [14] Jacobson, S. C., Hergenrder, R., Koutny, L. B., Warmack, R. J. and Ramsey, J. M. Analytical Chemistry, Vol.66, pp.1107-1113, 1994
    [15] Jacobson, S. C., Koutny, L. B., Hergenrder, R., Moore, A. W. Jr. and Ramsey, J. M. Analytical Chemistry, Vol.66, pp.3472-3476. 1994
    [16] Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M. Analytical Chemistry, Vol.72, pp.3512-3517. 2000
    [17] Crabtree, H. J., Cheong, E. C. S., Tilroe, D. A. and Backhouse, C. J. Anal.Chem., Vol.73, pp.4079-4086. 2001
    [18] Baldock, S. J., Fielden, P. R., Goddard, N. J., Kretschmer, H. R., Prest, J. E. and Treves Brown, B. J. Journal of Chromatography A, Vol.1042, pp.181-188. 2004
    [19] Bao, M., Wang, W., Ssensors and Actuators A56, pp.135-141. 1996
    [20] Gravesen, P., Branebjerg, O. J. and Jensen, S. Journal of Micromechanics And Microengineering, Vol. 3, pp. 168-182. 1993
    [21] Shoji, S., Microprocesses and Nanotechnology Vol.99, pp.72 –73. 1999
    [22] Mala, G. M., Li, D., Werner, C., Jacobasch, H. -J., and Ning, Y. B., Int. J. Heat and Fluid Flow, Vol.18, pp. 489-496. 1997
    [23] Tiselius, A., Trans. Faraday Soc. Vol.33, 524. 1937
    [24] Mala, G. M., Li, D. and Dale, J. D., Int. J. Heat Mass Transfer, Vol. 40, No. 13, pp.3079-3088. 1997
    [25] Yang, C. and Li, D., “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels,” J. of Colloid and Interface Science, Vol.194, pp.95-107. 1997
    [26] Jongenson, J. W. and Lukacs, K. D., Analytical Chemistry, Vol.53, pp.1298-1302. 1981
    [27] Patankar, N. A., and Hu, H. H., Analytical Chemistry, Vol. 70, pp.1870-1881. 1998
    [28] Terabe, S., Otsuka, K., Tsuchiya, A. and Ando, T., Analytical Chemistry, Vol.567, pp.111-113. 1984
    [29] Qiu, X. C., Hu, L., Masliyah, J. H. and Harrison, D. J., I. Conference on Solid-State Sensors and Actuators, pp.16-19. 1997
    [30] Andreev, V. P., Dubrovsky, S. G. and Stepanov, Y. V., J. Micro. Sep., pp.443-450. 1997
    [31] Rose, D. J. and Jorgenson, J. W., Analytical Chemistry, Vol.60, pp.642. 1988
    [32] Harrison, D. J., Manz, A., Fan, Z. and Ludi, H., Analytical Chemistry, Vol.64, pp. 1926-1932. 1992
    [33] Seiler, K., Harrison, D. J. and Manz, A., Analytical Chemistry, Vol.65, pp. 1481-1488. 1993
    [34] Effenhauser, C. S. and Manz, A., Analytical Chemistry, Vol.65, pp. 2637-2642. 1993
    [35] Effenhauser, C. S. and Manz, A., Analytical Chemistry, Vol.67, pp. 2284-2287.1995
    [36] Jacobson, S. C. and Hergenroden, R., Analytical Chemistry, Vol.66, pp. 1107-1113. 1994
    [37] Culbertson, C. T. and Jacobson, S. C., Analytical Chemistry, Vol.70, pp. 3781-3789. 1998
    [38] Paegel, B. M. and Mathies, R. A., Analytical Chemistry, Vol.72, pp. 3030-30737. 2000
    [39] Griffiths, S. and Nilson R. H., Analytical Chemistry, Vol.73, pp.272-278. 2001
    [40] Yang, R. –J., Fu, L. –M and Lin, Y. –C.,J. of Colloid and Interface Science, Vol. 239, pp.98-105, 2001
    [41] Yang, R. –J., Jeng, Y. –R. and Fu, L. –M., Computational Fluid Dynamics Journal, Vol.7, pp.397-404. 1999
    [42] Yang, R. –J., Fu, L. –M. and Hwang, C. –C., J. of Colloid and Interface Science, Vol.244, pp.173-179. 2001
    [43] Taylor, G. I., Proc. Roy. Soc., A219, pp.186-203. 1953
    [44] Tuckermann, D. B., and Pease, R. F. W., J. Electrochem. Soc., Vol.129, pp.c98. 1982
    [45] Tuckermann, D. B., and Pease, R. F. W., IEEE Electron Device Lett., Vol.2, pp.126-129. 1981
    [46] Rahman, M. M., and Gui, F., Adv. Electron. Package. Vol.4(2), pp.685 1993
    [47] Urbanck, W., Zemel, J. N., and Bau, H. H., J. Micromech. Microeng. Vol.3, pp.206. 1993
    [48] Peng, X. F., Peterson, G. P. and Wang, B. X., Exp. Heat Transfer, Vol.7, pp.249-264. 1994
    [49] Peng, X. F., Peterson, G. P. and Wang, B. X., Exp. Heat Transfer, Vol. 7, pp.265-283. 1994
    [50] Culbertson, C. T., Ramsey, R. S. and Ramsey, J. M.,Analytical Chemistry, Vol.72, pp.2285-2291. 2000
    [51] Jacobson, S. C. and Ramsey, J. M., Analytical Chemistry, Vol.69, pp.3212-3217. 1997
    [52] Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., Analytical Chemistry, Vol. 70, pp.4494-4504. 1998
    [53] Jacobson, S. C., Ermakov, S. V. and Ramsey, J. M., Analytical Chemistry, Vol.71, pp.3273-3276. 1999
    [54] Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., Analytical Chemistry, Vol.72, pp.3512-3517. 2000
    [55] Qu, W. and Li, D., J. of Colloid and Interface Science, Vol. 224, 397-407, 2000
    [56] Molho, J. I., Herr, A. E., Mosier Mosier, B. P., Stantiago, J. G. and Kenny, T. W., Micro Total Analysis Systems, pp.287-290. 2000
    [57] Molho, J. I., Herr, A. E., Mosier, B. P., Stantiago, J. G. and Kenny, T.W.,Analytical Chemistry, Vol.73, pp.1350-1360. 2001
    [58] Griffiths, S. K. and Nilson, R. H., Analytical Chemistry, Vol. 73, pp.272-278. 2001
    [59] Bianchi, F., Ferrigno, R. and Girault, H. H., Analytical Chemistry, Vol.72, pp.1987-1993. 2000
    [60] Grabtree, H. J., Cheong, C. S., Tilroe, D. A. and Backhouse, C. J.,Analytical Chemistry, Vol.73, pp.4079-4086. 2001
    [61] Arundell, M., Whalley, P. D. and Manz, A., Fresenius J. Analytical Chemistry, Vol.367, pp.686-691. 2000
    [62] J. L. Anderson and Y. Solomentsev, Chem. Eng. Comm., Vol. 148-150 ,pp. 291–314. 1996
    [63] R. W. Wunderlich, J. Colloid Interface Sci., Vol. 88,pp. 385–397. 1982
    [64] S. Sasaki, Colloid Polymer Sci., Vol. 263, pp. 935–940. 1985
    [65] J. H. Masliyah, G. Neale, K. Malysa, and T. G. M.van de Ven, Chem. Eng.Sci., Vol. 42, pp. 245–253. 1987
    [66] J. L. Anderson and J. Kim, J. Chem. Phys., Vol. 86, pp.5163–5173. 1987
    [67] H. J. Keh and J. Kuo, J. Colloid Interface Sci., Vol.185, pp. 411–423. 1997
    [68] J. Kuo and H. J. Keh, J. Colloid Interface Sci., Vol. 210,
    [69] J. Kuo and H. J. Keh, J. Colloid Interface Sci., Vol.195, pp. 353–367. 1997
    [70] S. B. Chen, Phys. Fluids, Vol.10, pp. 1550–1563. 1998
    [71] J. Happel, AIChE J., Vol. 4, pp. 197–201. 1958
    [72] S. Kuwabara, J. Phys. Soc. Jpn., Vol. 14, pp.527–532. 1959
    [73] D. Prasad, K. A. Narayan, and R. P. Chhabra,Int. J. Eng. Sci., Vol. 28,pp. 215–230. 1990
    [74] I. S. Jones, J.Colloid Interface Sci., Vol. 68, pp. 451–461. 1979
    [75] S. Levine, M. Levine, K. A. Sharp, and D. E.Brooks, Biophys. J.,Vol.42, pp.127–135. 1983
    [76] Rice, C. I.; Whitehead, R. J. Phys. Chem. Vol.69 pp.4017. 1965
    [77] Jorgenson, J. M.; Lukacs, K. D. Anal. Chem., Vol.53, pp.1298. 1981
    [78] Andreev, V. P.; Lisin, E. E. Chromatogr. Vol.37 pp.202. 1993
    [79] Neelesh, A. P.; Howard H. H. Anal. Chem. Vol.70 pp.1870. 1998
    [80] S. Kawahata, H. Ohshima, N. Muramatsu, and T.Kondo, J. Colloid Interface Sci., Vol. 138, pp. 182–186. 1990
    [81] K. Morita, N. Muramatsu, H. Ohshima, and T.Kondo, J. Colloid Interface Sci., Vol. 147, pp. 457–461. 1991
    [82] K. Makino, S. Yamamoto, K. Fujimoto, H.Kawaguchi, and H. Ohshima, J. Colloid Interface Sci., Vol. 166, pp. 251–258. 1994
    [83] H. Ohshima, J. Colloid Interface Sci., Vol. 163,pp. 474–483. 1994
    [84] H. J. Keh and Y. C. Liu, J. Colloid Interface Sci., Vol.195, pp. 169–191. 1997
    [85] Y. C. Liu and H. J. Keh, Langmuir, Vol. 14, pp. 1560–1574. 1998
    [86] F. Booth, J. Chem. Phys., Vol. 22, pp. 1956–1968. 1954
    [87] D. A. Saville, Adv. Colloid Interface Sci., Vol.16, pp. 267–279. 1982
    [88] P. H. Wiersema, A. L. Leob, and J. Th. G.Overbeek, J. ColloidInterface Sci., Vol. 22, pp. 78–99. 1966
    [89] S. R. de Groot, P. Mazur, and J. Th. G. Overbeek,J.Chem. Phys., Vol. 20, pp. 1825–1829. 1952
    [90] H. Ohshima, T. W. Healy, L. R. White, and R. W.O’Brien, J. Chem. Soc., Faraday Trans. 2, Vol.80, pp. 1299–1317. 1984
    [91] D. Stigter, J. Phys.Chem., Vol. 86, pp. 3553–3558. 1982
    [92] S. B. Chen and D. L. Koch, J. Colloid Interface Sci., Vol. 180, pp. 466–477. 1996
    [93] S. Levine, G. Neale, and N. Epstein, J. Colloid Interface Sci., V o l . 57, pp.424–437. 1976
    [94] H. Ohshima, J. Colloid Interface Sci., Vol. 208,pp. 295–301. 1998
    [95] H. J. Keh and J. M. Ding, J. Colloid Interface Sci., Vol. 227, pp. 540–552. 2000
    [96] R. W. O’Brien, J. Colloid Interface Sci., Vol. 81, pp. 234–248.1981
    [97] D.A. Saville, J. Colloid Interface Sci., Vol. 71,pp. 477–490. 1979
    [98] A. Watillonand J. Stone-Masui, J. Electroanal. Chem., Vol. 37, pp. 143–160. 1972
    [99] D.A. Saville, J. Colloid Interface Sci., V o l . 91, pp. 34–50. 1983
    [100] R. W. O’Brien, J. Colloid Interface Sci., Vol. 92, pp.204–216. 1983
    [101] R. W. O’ Brienand D. N . Ward, J. Colloid Interface Sci., Vol. 121, pp.402–413. 1988
    [102] Birdsall, C. K. IEEE Trans. Plasma Sci. Vol.19, pp.65. 1991
    [103] Hockney, R. W. and Eastwood, J. W.: Computer Simulation Using Particles. (Bristol, U. K.: Inst. of Phys. Publishing, 1988.)
    [104] Birdsall, C. K. and Langdon, A. B.: Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)
    [105] J.Muzikar,T.van de Goor,B.Gasˇ, and E. Kenndler: Electrophoresis Vol.23, pp.375. 2002
    [106] P. Walden, H. Ulich, and G. Busch: Z. Phys. Chem. Vol.123, pp.429. 1926
    [107] P. Walden and E. J. Birr: Z. Phys. Chem. Vol.153, pp.1. 1931
    [108] J. Petr and B. Gunther: Capillary Electrophoresis of Small Molecules and Ions (Wiley/VCH, Weiheim, 1993).

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE