簡易檢索 / 詳目顯示

研究生: 江明叡
Chiang, Ming-Jui
論文名稱: 應用擴展式卡爾曼濾波器及輻狀基底函數類神經網路於估算遭遇亂流事故班機之升力導數
The EKF and RBFNN Approach to Estimate Lift Derivatives from Turbulence-Accident FDR
指導教授: 何慶雄
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 51
中文關鍵詞: 擴展式卡爾曼濾波器輻狀基底函數類神經網路升力導數
外文關鍵詞: EKF, RBFNN, Lift Derivatives
相關次數: 點閱:162下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用飛航資料紀錄器所記錄之真實飛航資料進行性能分析。先進行初步估測,之後利用擴展式卡爾曼濾波器(Extended Kalman Filter,EKF)進行估測,依據力平衡與力矩平衡方程式求出其沿飛航軌跡之升力係數變化,再帶入輻狀基底函數類神經網路(Radial Basis Function Neural Network,RBFNN),以不同升力模型與資料分群法,估算出不同的升力導數,將所得結果進行比較。結果顯示擴展式卡爾曼濾波器可以改善飛行參數的誤差,而輻狀基底函數類神經網路的結果顯示穩態升力模型可能無法完整表達高動態下的升力模式。

    This study provides an approach to estimate flight performance by real flight data records from flight data recorder. The priori flight states are introduced. The approach use Extended Kalman Filter to reduce noise and bias of flight data records. Use dynamic equations to estimate lift coefficient at every single time in flight. Use different clustering method and different lift coefficient model on Radial Basis Function Neural Network to estimate lift derivatives and make comparisons. The study shows that Extended Kalman Filter can enhance the flight states, and Radial Basis Function Neural Network shows the steady lift model can not describe lift pattern in high-dynamic flight properly.

    摘要 3 Abstract 4 致謝 5 目錄 6 表目錄 8 圖目錄 9 第一章 導論 1 1.1. 前言 1 1.2. 研究動機與方法 1 1.3. 論文架構 2 第二章 系統架構與運動方程式 3 2.1. 飛航資料紀錄器 3 2.2. 座標系統 3 2.3. 座標系統轉換 5 2.4. 力平衡方程式 7 2.5. 擴展式卡爾曼濾波器 10 2.6. 輻狀基底函數類神經網路 12 第三章 資料處理與分析流程 15 3.1. 資料來源與種類 15 3.2. 資料分析流程 17 第四章 結果與討論 25 4.1. 以擴展式卡爾曼濾波器估算加速度偏差結果 25 4.2. 風速與風向估算之結果 27 4.3. 升力係數分析結果 29 4.4. 運用輻狀基底函數類神經網路估算升力導數 31 第五章 結論 36 參考文獻 50

    [1]行政院飛航安全委員會. 台灣飛安統計 1998-2008. Available: http://www.asc.gov.tw/author_files/statistics98-08.pdf
    [2] 翁錦堂. "從飛行記錄資料進行降落時遭遇風切航機之氣動力分析," 國立成功大學航空太空工程研究所, 台南, 2004.
    [3] 楊明浩、何慶雄、蕭飛賓. "擴展式卡爾曼濾波器於航機遭遇亂流之飛航資料估算," 中華民航學會聯合學術研討會, 中國航太學會, 2006.
    [4] 王亭介. "應用擴展式卡爾曼濾波器於估算積冰事故飛機之氣動力導數," 國立成功大學航空太空工程研究所, 臺南, 2008.
    [5] Phillips, W. F., Mechanics of flight, Wiley, Hoboken, N.J., 2004.
    [6] Stevens, B. L., and Lewis, F. L., Aircraft control and simulation, Wiley, New York, 1992.
    [7] 廖俊安. "應用GPS/INS於超輕航機氣動力係數之估算," 台南, 2007.
    [8] Minkler, G., and Minkler, J., Theory and application of Kalman filtering, Magellan Book Co., Palm Bay, FL, 1993.
    [9] Analytic Sciences Corporation. Technical Staff., and Gelb, A., Applied optimal estimation, M.I.T. Press, Cambridge, Mass.,, 1974.
    [10] Sundararajan, N., Saratchandran, P., and Li, Y., Fully tuned radial basis function neural networks for flight control, Kluwer Academic, Boston, 2002.
    [11] Yamaguchi, H., Engineering fluid mechanics, Springer, Dordrecht, The Netherlands, 2008.
    [12] Vinh, N. X., Flight mechanics of high-performance aircraft, Cambridge University Press, Cambridge ; New York, 1993.
    [13] Chapra, S. C., and Canale, R. P., Numerical methods for engineers, 5th ed., McGraw-Hill Higher Education, Boston, 2006.
    [14] Schmidt, L. V., Introduction to aircraft flight dynamics, American Institute of Aeronautics and Astronautics, Reston, Va., 1998.
    [15] Wang, Z., Li, Jilu ,Lan, C. E. Brandon, Jay M. "Estimation of unsteady aerodynamic models from flight test data," AIAA Atmospheric Flight Mechanics Conference, AIAA-2001-4017, Montreal, Canada, 2001.
    [16] Rauw, M. "FDC 1.2 – A Simulink Toolbox for Flight Dynamics and Control Analysis," 2nd ed., Haarlem, 2001.
    [17] EUROCAE. "Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems," Vol. ED-112, The European Organization for Civil Aviation Equipment, France, 2003.
    [18] 行政院飛航安全委員會Available: http://www.asc.gov.tw/
    [19] Nelson, R. C., Flight stability and automatic control, 2nd ed., WCB/McGraw Hill, Boston, Mass., 1998.

    下載圖示 校內:2012-07-14公開
    校外:2012-07-14公開
    QR CODE