| 研究生: |
洪士賢 Hung, Shin-Hsien |
|---|---|
| 論文名稱: |
阿拉伯芥Myo-Inositol-1-Phosphate Synthase基因之特性分析 Characterization of Arabidopsis Myo-Inositol-1-Phosphate Synthase gene |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 阿拉伯芥 、胚胎發育 、基因 |
| 外文關鍵詞: | Arabidopsis thaliana, embryogenesis, gene |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MIPS (myo-inositol-1-phosphate synthase)酵素於生物體內扮演重要的生理角色,如負責催化D-glucose 6-phosphate,使其轉化為MI-1-P (myo-inositol-1-phosphate),進一步參與許多生長發育反應。本實驗即以MIPS基因為研究對象,進行阿拉伯芥AtMIPS1 (Arabidopsis thaliana myo-inositol-1-phosphate synthase 1)基因之遺傳分析,探討其在胚發育過程所扮演角色。首先經由Nottingham Arabidopsis stock center (NASC)取得以T-DNA insertion方式所形成的mips1突變株。利用掃描式電子顯微鏡及光學顯微鏡觀察,發現此突變株種子,其種皮上之細胞呈現不規則排列的情形,且突變種子中亦觀察不到成熟胚之存在;證實此突變性狀的發生,確與T-DNA插入AtMIPS1基因有關。此外向Salk Institute Genomic Analysis Laboratory (SIGnAL)取得另一Salk序號之mips1突變之種子進行培養,觀察後發現其與本研究對象mips1突變株具有相同性狀,因此證明突變種子的產生,確實是AtMIPS1基因突變所造成之結果。利用南方墨點法分析阿拉伯芥MIPS1基因拷貝數目,以AtMIPS1基因譯碼區為探針,在多個限制酵素作用下,僅出現1個雜合反應條帶,因此推測AtMIPS1基因為單一拷貝基因。
為確認突變型種子為何種基因型?培養mips1突變株T2植株,收取並種植正常型種子後,待其長成外表型亦正常之T3植株,收取果莢內之種子,並觀察其種子外表型。發現果莢內正常型與突變型種子的比例皆接近3:1 (X2=3.841 , P < 0.05)。符合孟德爾之遺傳分離率,證實果莢內正常型的種子應由MIPS1/MIPS1與MIPS1/mips1所組成,而突變型種子則為mips1/mips1。
進一步讓mips1突變株T2植株進行自交,將具有突變種子的植株其花粉作為父本,野生型阿拉伯芥作為母本,雜交後種植果莢內之種子,結果發現有突變種子的出現,因此證明mips1可經由花粉傳遞,故為核內遺傳。而利用光學顯微鏡觀察以透明法處理之突變胚,發現發生變異的時期為球形胚發育至心形胚之階段,而突變心形胚會發生無胚柄構造的現象,推測胚發育延遲及變形的原因為胚分裂時細胞分裂的方向錯誤,而造成無胚柄構造的結果,而以GUS染色分析基因表現位置,AtMIPS1基因表現主要是在胚,這些結果顯示AtMIPS1基因在阿拉伯芥胚胎發育過程中的確扮演重要之功能。
The MIPS (myo-inositol-1-phosphate synthase)enzyme plays an important physiological role in organisms, catalyzing D-glucose 6-phosphate to MI-1-P (myo-inositol-1-phosphate) that participates many development processes. The genetic analysis of AtMIPS1 gene of Arabidopsis thaliana and examination of its function in embryogenesis were perfomed. The seeds of mips1 mutant, generated by T-DNA were provided by NASC. Using scanning electron microscopy and light microscopy to observe seed morphology, the cell arrangement of seed coat was abnormal and failed to develop to mature embryo. Another mips1 mutant had the different Salk number which obtained from SIGnAL with the same phenotype, proved that the mutant seeds were also caused by the mutation of AtMIPS1 gene. Southern blotting of genomic DNA with AtMIPS1 coding region suggested that AtMIPS1 was a single copy gene in Arabidopsis thaliana.
To determine the genotype of mutant seeds, seeds from siliques of normal phenotype T3 plant that cultivated from the normal seeds of T2 plants which had mips1 mutant were collected. The ratio of normal seeds to mutant seeds in each silique were close to 3:1 (X2 = 3.841, P < 0.05), fitting to the law of segregation. This result confirmed that the genotype of normal and mutant seeds in siliques were MIPS1/MIPS1(or MIPS1/mips1) and mips1/mips1, respectively.
T2 plant were further allowed to self-pollinate, pollens from plant which had mutant seeds cross to wild type serving as maternal parents. The presence of mutant seeds in siliques from hybriding plants indicated that mips1 was transmitted by pollens. In development processes, the embryo of mutant seed which occurred variants during the stage of globular to heart embryo was observed by using light microscopy. The phenomenon of non-suspensor in mutant heart embryo may be caused by the wrong direction of cell division in embryogenesis. The AtMIPS1 promoter::GUS expression was detected only in embryo. These results suggest that AtMIPS1 gene may play a critical role in embryo development of Arabidopsis thaliana.
胡適宜, 1990. 被子植物胚胎學. 曉圓出版社. 北京
高景輝, 1986. 植物荷爾蒙 pp:386-387. 華香園出版社. 台北
Abdul, M. C., Ming, L., Miller, C., Craig, S., Dennis, E. S., and Peacock, W. J. (1997). Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 4223-4228.
Abdul, M. C., Koltunow, A., Payne, T., Ming, L., Tucker, M. R., Dennis, E. S., and Peacock, W. J. (2001). Control of early seed development. Annu. Rev. Cell Dev. Biol. 17, 677-699.
Bechtold, N., Eillis, J., and Pelletier, G. (1993). In planta Agrobacterium mediated gene transfer by infiltration of adult Aradidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sciences 316, 1194-1199.
Bhavna, A., Prasad, K, C., and Siddiqi, I. (2002). Identification and analysis of DYAD a gene required for meiotic chromosome organization and female meiotic progression in Arabidopsis. Development 129, 3935-3943.
Bhojwani S. S., and Soh W.Y. (2001). Current trends in the embryology of angiosperms. Kluwer Academic Publishers. Dordrecht. pp. 489-507.
Bouman, F. (1984). The ovule. In B. M. Johri, (ed.) Embryology of angiosperms, Springer-Verlag, Berlin, pp. 123-157.
Charles, A. B., and Hanke, D. E. (1996). Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem. J. 314, 215-225.
Chun, J. A., Jin, U. H., Lee, J. W., Yi, Y. B., Hyung, N. I., Kang, M. H., Pyee, J. H., Suh, M. C., Kang, C. W., Seo, H. Y., Lee, S. W., and Chung, C. H. (2003). Isolation and characterization of a myo-Inositol 1-Phosphate Synthase cDNA from development sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt-induced transcription during germination. Planta 216, 874-880.
Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735- 743.
David, R.H., and Springer, P. S. (2002). The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214, 373-382.
Donald., E. N., Koukoumanos, M., and Bohnert, H. J. (1999). Myo-Inositol-development sodium uptake in ice plant. Plant Physiol. 119, 165-172.
Dodeman, V. L., Ducreux, G., and Kreis, M. (1997). Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 313, 1493-1509.
Doyle, J. J., and Doyle, J. L. (1987). A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15.
Eisenberg, F., Bolden, A.H., and Loewus, F. A. (1964). Inositol formation by cyclization of glucose chain in rat testis. Biochem. Biophys. Res. Commun. 14, 419-424.
Fischer, H. O. L. (1945). Chemical and biochemical relationships between hexoses and inositols. Harvey Lect. 40, 156-178.
Gary, N. D., Lee, D., and Christensen, C. A. (1998). Genetic analysis of female gametophyte development and function. Plant Cell 10, 5-17.
Grimanelli, D., Oliver, L., Enrico, P., and Grossniklaus, U. (2001). Developmental genetic of gametophytic apomixes. Trends in Genet. 17, 597-604.
Hans, J. B., Nelson, D. E., and Jensen, R. G. (1995). Adaptations to environmental
stresses. Plant Cell 7, 1099-1111.
Hegeman, C. E., Good, L. L., and Grabau, E. A. (2001). Expression of D-myo- inositol-3-phosphate synthase in soybean. implications for phytic acid biosynthesis. Plant Physiol. 125, 1941-1948.
John, M. L., and Henry, S. A. (1991) Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 19, 3987-3994.
Johnson, M. D. (1994). The Arabidopsis thaliana myo-Inositol 1-Phosphate Synthase (EC 5.5.1.4 ). Plant Physiol. 105, 1023-1024.
Johnson, M. D., and Henry, S.A. (1989). Biosynthesis of Inositol in yeast. J. Biol. Chem. 264, 1274-1283.
Johnson, M. D., and Sussex, I. M. (1995) 1L-myo-Inositol 1-Phosphate Synthase from Arabidopsis thaliana. Plant Physiol. 107, 613-619.
Jurgens, G. (2001). NEW EMBO MEMBER’S REVIEW Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J. 14, 3609-3616.
Loewus, F. A., and Dickinson, D. B. (1982). Cyclitols. In Encyclopedia of plant
physiology, New Series, Vol. 13A, Plant Carbohydrates I, F. A. Loewus and W. Tanner, eds (Berlin: Springer-Verlag), pp. 193-216.
Loewus, F. A., and Kelly, S. (1962). Conversion of glucose to inositol in parsley leaves. Biochem. Biophys. Res. Commun. 7, 204-208.
Maheshwari, P. (1950). An introduction to the embryology of angiosperms. McGraw Hill, New York, 1950.
Majumder, A. L., Johnson, M. D., and Henry, S. A. (1997). 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta 1348, 245-256.
Manabu, I., Majumder, A. L., Bornhouser, A., Michalowski, C. B., Jensen, R. G., and Bohnert, H. J. (1996). Coordinate transcriptional induction of myo-Inositol metabolism during environmental stress. Plant J. 9, 537-548.
Mansfield, S. G., and Briarty, L. G. (1991). Early embryogenesis in Arabidopsis thaliana.Ⅱ. The developing embryo. Can. J. Bot. 70, 151-164.
Maquenne, L. (1887). Recherches sur I’Inosite. Ann. Chim. Phys 12, 80-129.
Martin, S., and Lindsey. K. (2000). Polarity and signaling in plant embryogenesis. J. Exp. Bot. 51, 971-983.
Meinke, D.W., and Sussex, I. M. (1979a). Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev. Biol. 72, 50-61.
Meinke, D.W. (1995). Molecular genetics of plant embryogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 369-394.
Michael, J. B., and Irvine, R. F. (1989). Inositol phosphates and cell signaling. Nature 341, 197-205.
Minviluz, G. S., Koh, S., Becker, J., and Stacey, G. (2002). AtOPT3, a member of the
oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell 14, 2799-2811.
Muller, A. (1961). Zur characterisierung der bluten und infloreszenzen von Arabidopsis thaliana. Heynh. Kulturpflanze 9, 364-393.
Muller, A. J. (1963). Embryonentest zum nachweis rezessiver letalfaktoren bei Arabidopsis thaliana. Biol. Zentralbl 82, 133-163.
Mullis, K. B., and Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335-350.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473-497.
Murielle, B., Gomord, V., Audran, C., Berger, N., Dubreucq, B., Granier, F., Lerouge, P., Faye, L., Caboche, M., and Lepiniec, L. (2001). Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J. 20, 1010-1019.
Nelson, D. E., Michelle, K., and Hans, J. B. (1999). Myo-Inositol-dependent sodium
uptake in ice plant. Plant Physiol. 119, 165-172.
O’Neill, S. D., Nadeau, J. A., Zhang, X. S., Bui, A. Q., and Halevy, A. H. (1993). Interorgan regulation of ethylene biosynthetic gene by pollination. Plant Cell 5, 419-432.
Posternak, T. (1942). Recherches dans la des cyclites. Ⅵ. Sur la configuration de las meso-inosite, de las scyllite et d’un inosose obtenu par vioie biochimique (scyllo-ms-inosose). In: Helvetica Chimica Acta 25, 746-753.
Robert, F. S., and Staples, R. C. (1985) Inositol and sugars in adaptation of tomato to
salt. Plant Physiol. 77, 206-210.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (2001). Molecular Cloning. A Laboratory Manual. 3rd ed. Cold Spring Habor Laboratory Press.
Schulz, O. E., and Jensen, W. A. (1968). Capsella embryogenesis: the egg, zygote, and young embryo. Am. J. Bot. 55, 807-819.
Smart, C. C., and Fleming, A. J. (1993). A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J. 4, 279-293.
Smyth, D. R., Bowman, J. L., Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767.
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
Thomas, F. D., and Henry, S. A. (1981). myo-Inositol-1-Phosphate Synthase. J. Biol. Chem. 256, 7077-7085.
Vered, R., Bergervoet, J. H. W., and Koornneef, M. (2001). Sequential steps for development arrest in Arabidopsis seeds. Development 128, 243-252.
Vandendries, R. (1909). Contribution `a l’histoire du development des cruciferes. Cellule 25, 412-459.
Wells, W. E., and Eisenberg, F. (1978). Cyclitols and phosphoinositides, Academic Press, Inc., New York, NY, pp. 1-607.
William, D. H., Carlson, T. J., Kerr, P. S., and Sebastian. (2002). Biochemical and
molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybeen seeds. Plant Physiol. 128, 650-660.
Yoshida, K. T., Tomikichi, W., Hiroshi, K., Ritsuko, M-F., and Satoshi, N. (1999). Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119, 65-72.
Yoshida, K. T., Fujiwara, T., and Naito, S. (2002). The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiologia Plantarum 114, 581-587.