| 研究生: |
張家銘 Chang, Chia-Ming |
|---|---|
| 論文名稱: |
以離散事件模擬與多屬性決策系統探討光學眼鏡製造之精實管理 A Study on the Lean Management for Optical Glasses Manufacturing using Discrete Event Simulation and Multiple Attribute Decision-making Methods |
| 指導教授: |
楊大和
Yang, Ta-ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 精實管理 、流程設計 、價值流圖 、離散事件模擬 、田口方法 、多屬性決策 |
| 外文關鍵詞: | Lean Production, Process design, Value streaming mapping, Discrete events simulation, Taguchi method, Multiple attribute decision-making method |
| 相關次數: | 點閱:240 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現在的社會處於運動風氣興盛的時代,市場對於運動商品的需求增加,商品不僅要實用更需兼具時尚,而對於製作運動用品的製造商來說,除了增加自身生產效率,仍需以大量客製化的方式以滿足不同顧客需求。面臨環境競爭與國際化的趨勢,製造商朝向高品質(Quality)、低成本(Cost)、交期準(Delivery)與高彈性(Flexibility)等目標持續改善,製造商也紛紛傾向導入精實生產方式(Lean Production)來縮短生產前置時間與增加製造彈性以提升產業競爭力。
本研究探討之案例公司是一家光學眼鏡製造商,屬於接單式生產方式(Make to order,MTO),當所有零件到齊而經過最終組裝製程即可出貨至顧客手中,但產品種類多樣且生產流程變化程度高,為典型的零工式生產環境(Job Shop environment)。零件之生產前置時間差異大,進而影響物料到齊狀況,將造成最終組裝製程無法依據生產計劃進行。本研究欲藉由將精實管理概念應用於流程改善,產生出合適且實務可行的流程設計方案,讓管理者在進行流程改善時,有一參考之依據。
首先以價值流圖定義問題並找出浪費所在,以此作為改善之契機,接著導入精實管理概念作為控制因子發展多種精實系統設計,以模擬工具產生多層面的績效指標來衡量改善成效。為了評估各設計方案之整體績效,本研究以田口方法結合多屬性決策方法來求解多重品質特性之最佳化問題,尋找最佳因子水準組合,並以驗證實驗來比較最佳設計與現況之改善效益,最後利用單反應實驗來探討求得的解是否為整體最佳。
經過實驗分析可以得知,本研究求解之最佳因子水準組合為 ,表示採用小批量與平準化之精實管理概念將有效改善系統績效,比較於現況之服務水準改善了6.6%、產出數量改善3.4%、組裝產能利用率改善14.3%,而週期時間與備料倉庫之WIP數量亦分別有7.5%與9.1%的改善幅度。根據單反應實驗結果,我們可以發現服務水準與週期時間等兩項指標皆能達到最佳情況,對於案例公司屬於接單式生產且大量客製化之環境,符合案例公司之目標,表示以該最佳設計將能夠滿足縮短週期時間以提升服務水準之訴求。
In this study, an optical glasses manufacturer presented here to be example, we used value stream mapping to found waste and defined potential problem in the production system. Such as material shortage, overproduction, high variability of shop floor. Based on these reason, we proposed lean management principles to discuss and identify which lean design will gives better improvement. However, how to measure the performance when we looking forward to optimizing overall performance index? We used discrete-event simulation to generate value of performance index, and also used multiple attribute decision-making methods to found best design.
When we evaluated single response of performance index, most academics likely used Taguchi methods. However, traditional Taguchi method focus on single quality characteristic problem is not enough to analysis multiple quality characteristic problem. This study presented an optimizing procedure to solving the multiple quality characteristic problem. By using the proposed approach and the overall performance index for multiple responses to optimize multiple quality characteristics problems, and best combination of parameters can be found. In the end of experiments, we also used traditional Taguchi method to analysis single responses optimization. Through the experiments to find out optimal value of each quality characteristic, and compare with the best combination.
經濟部,2014,工業產銷存動態調查,經濟部統計處。
黃昭勛,2007,台灣外移西進的傳統產業,由OEM轉型為ODM的實證研究—以某眼鏡製造公司為例,國立政治大學科技管理研究所,碩士論文。
蘇朝墩,2013,品質工程:線外方法與應用,前程文化事業有限公司,新北市。
李輝煌,2013,田口方法:品質設計的原理與實務,四版修訂,高立圖書有限公司,新北市。
簡禎富,2014,決策分析與管理:紫式決策分析以全面提升決策品質,二版,雙葉書廊,台北市。
石川秀人,2009,最新圖解豐田生產方式之基本與實踐,財團法人中衛發展中心,台北市。
游惠卿,2014,當代時代雜誌,Available:http://modernmgz.com/content.php?flag=2. (取得日期:2015.05.30)
Ahi, A., Aryanezhad, M., Ashtiani, B., and Makui, A., 2009, A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method, Computers & Operations Research, 36(5), 1478-1496.
Banks, J., Carson, J., Nelson, B., and Nicol, B., 2005, Discrete-Event System Simulation, 4th edition, Peason Prentice Hall, New Jersey.
Barron, F. H., and Barrett, B. E., 1996, The Efficacy of Smarter : Simple Multi-Attribute Rating Technique Extended to Ranking, Acta Psychologica, 93(1-3), 23-26.
Hopp, W., and M. L. Spearman, 2008, Factory Physics, 3rd edition, Waveland Press, United States.
Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K., 2004, Quality management research by considering multi-response problems in the Taguchi method-a review, The International Journal of Advanced Manufacturing Technology, 26, 1331-1337.
Kelton, W. D., Sadowski, R. P., and Sturrock, D. T., 2010, Simulation with Arena, 5th edition, McGraw Hill, New York.
Lu, J. C., Yang, T., and Wang, C. Y., 2011, A lean pull system design analysed by value stream mapping and multiple criteria decision-making method under demand uncertainty, International Journal of Computer Integrated Manufacturing, 24(3), 211-228.
Liker, J. K., 2004, The Toyota Way:14 Management Principles from The World’s Greatest Manufacturer, McGraw-Hill, New York.
Monden, Y., 2012, Toyota Production System : An Integrated Approach to Just-In-Time, 4th edition, CRC Press, Boca Raton.
Ohno, T., 1988, Toyota Production System:Beyond Large-Scale Production, Productivity Press, Portland.
Rother, M., and J. Shook. 1998. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda. Cambridge, The Lean Enterprise Institute, Massachusetts.
Rother, M., and Harris, R., 2003, Creating Continuous Flow : An Action Guide for Managers, Engineers & Production Associates, The Lean Enterprise Institute, Massachusetts.
Shah, R. and Ward, P. T., 2007, Defining and developing measures of lean production, Journal of Operations Management, 25, 785-805.
Slomp, J., Bokhorst, J. C., and Germs, R., 2009, A lean production control system for high-variety/low-volume environments: a case study implementation, Production Planning & Control, 20(7), 586-595.
Tong, L. I., and Su, C. T., 1997, Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making, Quality and Reliability Engineering International 13(1), 25-34.
Tyagi, S., Choudhary, A., Cai, X., and Yang, K., 2015, Value stream mapping to reduce the lead-time of a product development process, International Journal of Production Economics, 160, 202-212.
Womack, J. P., and Jones, D. T., 2004, Lean Thinking:Banish Waste and Create Wealth in Your Corporation, Simon and Schuster, New York.
Yang, T., and Chou. P., 2005, Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method, Mathematics and Computers in Simulation, 68(1), 9-21.
Yang, T., Kuo, Y., Su, C., and Hou, C. L., 2015, Lean production system design for fishing net manufacturing using lean principles and simulation optimization, Journal of Manufacturing Systems, 34, 66-73.
Yang, T., Chen, M. C., and Hung, C. C., 2007, Multiple attribute decision-making methods for the dynamic operator allocation problem, Mathematics and Computers in Simulation, 73(5), 285-299.
Yang, T., Kuo, Y., and Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study, International Journal of Production Research 42(19), 4015-4030.