簡易檢索 / 詳目顯示

研究生: 趙家成
Chao, Chia-Cheng
論文名稱: 擴增實境於微物件組裝之實現
Implementation of Augmented Reality in Micro Object Assembly
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: 微物件組裝擴增實境虛擬校正視覺伺服
外文關鍵詞: micro object assembly, augmented reality, virtual calibration, visual servo
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究將擴增實境(Augmented Reality)技術應用於基於視覺的微裝配作業,首先利用CAD 軟體繪製虛擬微組裝機器,並於虛擬環境中設置與真實視覺系統相同之虛擬攝影機,模擬其擷取到之影像,接著透過影像目標追蹤演算法比對虛擬影像與CCD 擷取影像中的元件點特徵誤差,並以此誤差校正虛擬環境的攝影機參數與元件位置,使虛擬影像與真實影像中相同元件之特徵點位置重疊,並在虛擬影像中還原真實影像中被遮蔽之元件特徵或是不清晰的邊緣特徵,再利用虛擬影像與真實影像產生擴增實境之影像,藉由影像上擴增的資訊開發簡單化的物件與組合件孔洞定位演算法,以提升微裝配作業效率,其中微組裝系統之平台移動方式使用視覺伺服控制,最後研究完成自動化連續組裝兩個物件,其中物件為直徑80μm、長度1~1.3mm 之圓柱形物件,組合件之孔洞直徑為100μm,組裝間隙比為0.2。

    In this thesis, Augmented Reality technology is applied to vision-based microassembly operation. At first, CAD software is employed to draw a virtual micro-assembly machine. Virtual cameras are set as the same real visual system in a virtual environment to simulate the captured image. Then, the representative feature points of virtual image and CCD image will be obtained and compared through image tracking algorithm. The errors of feature points are utilized to correct the camera parameters and component location in the virtual environment such that the feature points of the virtual image and the real image will overlap and obscured features or blurred edges in real image can be restored in virtual image. By utilizing image information of augmented reality, a simple algorithm of localizing micropegs and matting hole is developed to improve the efficiency in performing microassembly operation. Finally, the research achieves an automatic operation of two consecutive peg-in-hole assembly. The operation is with cylindrical pegs of diameter 80 μm, length 1~1.3mm, assembled to a hole of diameter 100 μm, i.e., clearance ratio of 0.2.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號表 XXI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 擴增實境的簡介 2 1-3.2 虛擬實境於微組裝之應用 6 1-3.3 擴增實境於組裝之應用 9 1-4 研究目標與方法 13 1-5 本文架構 14 第二章 虛擬場景的建立 15 2-1 3D電腦圖形學簡介 15 2-1.1 渲染技術的種類與其流程 15 2-1.2 虛擬環境之座標轉換 16 2-2 3D模型的建構 17 2-2.1 實體模型的表達 17 2-2.2 軟體的選擇 19 2-3 3D模型的運動 19 2-3.1 模型座標表示 19 2-3.2 模型矩陣的種類 20 2-4 虛擬攝影機的設置 22 2-4.1 視角的改變 22 2-4.2 投影與成像 24 2-4.3 視埠轉換 27 2-5 本章總結 28 第三章 虛擬微組裝系統的建立與校正 29 3-1 微組裝系統簡介 29 3-1.1 微組裝系統實體架構 29 3-1.2 微組裝系統模型 31 3-2 微組裝系統模型之動作分析 35 3-2.1 線性移動平台之動作分析 35 3-2.2 撓性微夾爪之動作分析 37 3-3 虛擬影像與真實影像誤差分析 38 3-3.1 誤差源分析 38 3-3.2 影像代表點特徵選取 40 3-3.3 影像定位演算法 43 3-4 虛擬環境校正方法 51 3-4.1 投影矩陣之參數校正 51 3-4.2 視圖矩陣之參數校正 54 3-4.3 虛擬元件之初始位置校正 58 3-4.4 虛擬線性平台之移動方位校正 60 3-5 虛擬場景校正結果討論 62 3-6 本章總結 66 第四章 擴增實境應用與組裝分析 67 4-1 虛擬影像之隱藏面和邊緣還原 67 4-1.1 隱藏面和邊緣之種類分析 67 4-1.2 3D場景隱藏面的判斷 68 4-1.3 虛擬微組裝系統之影像隱藏特徵還原 71 4-2 擴增實境之實現 74 4-2.1 真實影像隱藏特徵還原 74 4-2.2 物件組裝定位方法分析 78 4-3 自動化組裝微物件程序分析 83 4-3.1 影像定位與移動平台控制 83 4-3.2 真實與虛擬平台的移動時序探討 92 4-4 本章總結 95 第五章 微組裝系統整合與驗證 96 5-1 系統整合 96 5-1.1 硬體整合 96 5-1.2 軟體整合 99 5-2 微物件組裝實驗驗證 102 5-2.1 實驗規劃 102 5-2.2 實驗一結果展示與結果分析 105 5-2.3 實驗二結果展示 107 5-2.4 實驗二結果分析 120 5-2.5 實驗綜合討論 123 第六章 結論與未來展望 127 6-1 結論 127 6-2 未來展望 129 參考文獻 131 附錄A 134 附錄A-1 微夾持器之組裝流程 134 附錄A-2 虛擬微組裝系統攝影機校正結果 135

    [1] R. T. Azuma, “Survey of Augmented Reality,” MIT Press Teleoperators and Virtual Environments 6, 4, pp. 355-385, 1997.
    [2] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information and Systems, Vol. 77(12), pp. 1321-1329, 1994.
    [3] J. Zhang, S. K. Ong, and A. Y. C Nee, “A Multi-regional Computation Scheme in An AR-assisted in SITU CNC Simulation Environment,” Computer-Aided Design, 42(12), pp. 1167-1177, 2010.
    [4] A. Y. C. Nee, S. K. Ong, G. Chryssolouris, and D. Mourtzis, “Augmented Reality Applications in Design and Manufacturing,” CIRP Annals-manufacturing technology, 61(2), pp. 657-679, 2012.
    [5] S. K. Ong, Z. B. WANG, “Augmented Assembly Technologies Based on 3D Bare-hand Interaction,” CIRP Annals-Manufacturing Technology, 60.1, pp. 1-4, 2011.
    [6] M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller, ... and H. Fuchs, “Augmented Reality Guidance for Needle Biopsies: An Initial Randomized, Controlled Trial in Phantoms,” Medical Image Analysis, 6(3), pp. 313-320, 2002
    [7] T. Drummond and R. Cipolla, “Real-Time Visual Tracking of Complex Structures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp. 932-946, 2002.
    [8] A. Sulzmann, J. Breguet, and J. Jacot. “Microvision System (MVS): A 3D Computer Graphic-based Microrobot Telemanipulation and Position Feedback by Vision.” Photonics East'95. International Society for Optics and Photonics, 1995.
    [9] J. Alex, B. Vikramaditya, and B. Nelson, “A Virtual Reality Teleoperator Interface for Assembly of Hybrid MEMS Prototypes.” In: Proceedings of DETC, pp. 13-16, 1998.
    [10] A. Ferreira, C. Cassier, and S. Hirai, “Automatic Microassembly System Assisted by Vision Servoing and Virtual Reality,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, pp. 321-333, 2004.
    [11] J. Cecil and J. Jones, “VREM: An Advanced Virtual Environment for Micro Assembly,” The International Journal of Advanced Manufacturing Technology, pp.1-10, 2014.
    [12] N. Pathomaree and S. Charoenseang, “Augmented Reality for Skill Transfer in Assembly Task,” IEEE International Workshop on Robots and Human Interactive Communication, pp. 500-504, 2005.
    [13] P. P. Valentini, “Interactive Virtual Assembling in Augmented Reality,” International Journal on Interactive Design and Manufacturing, Vol. 3, Issue 2, pp 109-119, 2009.
    [14] M. Probst, C. Hürzeler, R. Borer, and B. J. Nelson, “Virtual Reality for Microassembly,” International Society for Optics and Photonics, pp. 67180D-67180D, October, 2007.
    [15] A. Rastogi, P. Milgram, and D. Drascic, “Tele-robotic Control with Stereoscopic Augmented Reality,” In Electronic Imaging: Science & Technology, pp. 115-122, 1996.
    [16] R. Marı´n, P. J. Sanz, P. Nebot, and R. Wirz, “A Multimodal Interface to Control a Robot Arm Via the Web: a Case Study on Remote Programming,” IEEE Transactions on Industrial Electronics 52(6), pp. 1506-1520, 2005.
    [17] R. Bischoff and A. Kazi, “Perspectives on Augmented Reality Based Human–Robot Interaction with Industrial Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3226-3231, September 2004.
    [18] G. Reinhart, U. Munzert, and W. Vogl, “A Programming System for Robot-based Remote-laser-welding with Conventional Optics,” CIRP Annals 57(1), pp. 37-40, 2008.
    [19] S. K. Ong, J. W. S. Chong, and A. Y. C. Nee, “A Novel AR-based Robot Programming and Path Planning Methodology,” Robotics and Computer-Integrated Manufacturing, 26(3), pp. 240-249, 2010.
    [20] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.
    [21] R. J. Chang, C. Y. Lin, and Lin P. S, “Visual-Based Automation of Peg-in-Hole Microassembly Process,” ASME, Journal of Manufacturing Science and Engineering 133.4, 2011.
    [22] R. J. Chang and C. C. Chen, “Using Microgripper in evelopment of Automatic Adhesive Glue Transferring and Binding Microassembly System,” Engineering, 2, pp. 1–11, 2010.
    [23] 黃仁佐, “應用虛擬場景於隔離環境微物件遠端操作系統,” 國立成功大學機械工程學系碩士論文, 2005.

    無法下載圖示 校內:2019-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE