| 研究生: |
趙家成 Chao, Chia-Cheng |
|---|---|
| 論文名稱: |
擴增實境於微物件組裝之實現 Implementation of Augmented Reality in Micro Object Assembly |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 微物件組裝 、擴增實境 、虛擬校正 、視覺伺服 |
| 外文關鍵詞: | micro object assembly, augmented reality, virtual calibration, visual servo |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究將擴增實境(Augmented Reality)技術應用於基於視覺的微裝配作業,首先利用CAD 軟體繪製虛擬微組裝機器,並於虛擬環境中設置與真實視覺系統相同之虛擬攝影機,模擬其擷取到之影像,接著透過影像目標追蹤演算法比對虛擬影像與CCD 擷取影像中的元件點特徵誤差,並以此誤差校正虛擬環境的攝影機參數與元件位置,使虛擬影像與真實影像中相同元件之特徵點位置重疊,並在虛擬影像中還原真實影像中被遮蔽之元件特徵或是不清晰的邊緣特徵,再利用虛擬影像與真實影像產生擴增實境之影像,藉由影像上擴增的資訊開發簡單化的物件與組合件孔洞定位演算法,以提升微裝配作業效率,其中微組裝系統之平台移動方式使用視覺伺服控制,最後研究完成自動化連續組裝兩個物件,其中物件為直徑80μm、長度1~1.3mm 之圓柱形物件,組合件之孔洞直徑為100μm,組裝間隙比為0.2。
In this thesis, Augmented Reality technology is applied to vision-based microassembly operation. At first, CAD software is employed to draw a virtual micro-assembly machine. Virtual cameras are set as the same real visual system in a virtual environment to simulate the captured image. Then, the representative feature points of virtual image and CCD image will be obtained and compared through image tracking algorithm. The errors of feature points are utilized to correct the camera parameters and component location in the virtual environment such that the feature points of the virtual image and the real image will overlap and obscured features or blurred edges in real image can be restored in virtual image. By utilizing image information of augmented reality, a simple algorithm of localizing micropegs and matting hole is developed to improve the efficiency in performing microassembly operation. Finally, the research achieves an automatic operation of two consecutive peg-in-hole assembly. The operation is with cylindrical pegs of diameter 80 μm, length 1~1.3mm, assembled to a hole of diameter 100 μm, i.e., clearance ratio of 0.2.
[1] R. T. Azuma, “Survey of Augmented Reality,” MIT Press Teleoperators and Virtual Environments 6, 4, pp. 355-385, 1997.
[2] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information and Systems, Vol. 77(12), pp. 1321-1329, 1994.
[3] J. Zhang, S. K. Ong, and A. Y. C Nee, “A Multi-regional Computation Scheme in An AR-assisted in SITU CNC Simulation Environment,” Computer-Aided Design, 42(12), pp. 1167-1177, 2010.
[4] A. Y. C. Nee, S. K. Ong, G. Chryssolouris, and D. Mourtzis, “Augmented Reality Applications in Design and Manufacturing,” CIRP Annals-manufacturing technology, 61(2), pp. 657-679, 2012.
[5] S. K. Ong, Z. B. WANG, “Augmented Assembly Technologies Based on 3D Bare-hand Interaction,” CIRP Annals-Manufacturing Technology, 60.1, pp. 1-4, 2011.
[6] M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller, ... and H. Fuchs, “Augmented Reality Guidance for Needle Biopsies: An Initial Randomized, Controlled Trial in Phantoms,” Medical Image Analysis, 6(3), pp. 313-320, 2002
[7] T. Drummond and R. Cipolla, “Real-Time Visual Tracking of Complex Structures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp. 932-946, 2002.
[8] A. Sulzmann, J. Breguet, and J. Jacot. “Microvision System (MVS): A 3D Computer Graphic-based Microrobot Telemanipulation and Position Feedback by Vision.” Photonics East'95. International Society for Optics and Photonics, 1995.
[9] J. Alex, B. Vikramaditya, and B. Nelson, “A Virtual Reality Teleoperator Interface for Assembly of Hybrid MEMS Prototypes.” In: Proceedings of DETC, pp. 13-16, 1998.
[10] A. Ferreira, C. Cassier, and S. Hirai, “Automatic Microassembly System Assisted by Vision Servoing and Virtual Reality,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, pp. 321-333, 2004.
[11] J. Cecil and J. Jones, “VREM: An Advanced Virtual Environment for Micro Assembly,” The International Journal of Advanced Manufacturing Technology, pp.1-10, 2014.
[12] N. Pathomaree and S. Charoenseang, “Augmented Reality for Skill Transfer in Assembly Task,” IEEE International Workshop on Robots and Human Interactive Communication, pp. 500-504, 2005.
[13] P. P. Valentini, “Interactive Virtual Assembling in Augmented Reality,” International Journal on Interactive Design and Manufacturing, Vol. 3, Issue 2, pp 109-119, 2009.
[14] M. Probst, C. Hürzeler, R. Borer, and B. J. Nelson, “Virtual Reality for Microassembly,” International Society for Optics and Photonics, pp. 67180D-67180D, October, 2007.
[15] A. Rastogi, P. Milgram, and D. Drascic, “Tele-robotic Control with Stereoscopic Augmented Reality,” In Electronic Imaging: Science & Technology, pp. 115-122, 1996.
[16] R. Marı´n, P. J. Sanz, P. Nebot, and R. Wirz, “A Multimodal Interface to Control a Robot Arm Via the Web: a Case Study on Remote Programming,” IEEE Transactions on Industrial Electronics 52(6), pp. 1506-1520, 2005.
[17] R. Bischoff and A. Kazi, “Perspectives on Augmented Reality Based Human–Robot Interaction with Industrial Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3226-3231, September 2004.
[18] G. Reinhart, U. Munzert, and W. Vogl, “A Programming System for Robot-based Remote-laser-welding with Conventional Optics,” CIRP Annals 57(1), pp. 37-40, 2008.
[19] S. K. Ong, J. W. S. Chong, and A. Y. C. Nee, “A Novel AR-based Robot Programming and Path Planning Methodology,” Robotics and Computer-Integrated Manufacturing, 26(3), pp. 240-249, 2010.
[20] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.
[21] R. J. Chang, C. Y. Lin, and Lin P. S, “Visual-Based Automation of Peg-in-Hole Microassembly Process,” ASME, Journal of Manufacturing Science and Engineering 133.4, 2011.
[22] R. J. Chang and C. C. Chen, “Using Microgripper in evelopment of Automatic Adhesive Glue Transferring and Binding Microassembly System,” Engineering, 2, pp. 1–11, 2010.
[23] 黃仁佐, “應用虛擬場景於隔離環境微物件遠端操作系統,” 國立成功大學機械工程學系碩士論文, 2005.
校內:2019-08-19公開