簡易檢索 / 詳目顯示

研究生: 蔣宗勳
Chiang, Tsung-Hsun
論文名稱: 氮化鎵系列發光二極體在發光效率與抗靜電保護能力之研究
Investigation of Luminous Efficiency and Electrostatic Discharge Protection Ability on GaN-Based Light Emitting Diode
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 邱裕中
Chiou, Yu-Zung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 154
中文關鍵詞: 氮化鎵發光二極體抗靜電保護能力
外文關鍵詞: GaN, LEDs, ESD
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對氮化鎵發光二極體在發光效率以及抗靜電保護能力上做探討。
    我們透過製程和磊晶兩種方式去提升發光二極體的電流散佈能力。磊晶部分我們是在主動區與N型氮化鎵之間插入輕摻雜N型氮化鎵磊晶層。製程部分則是利用不同電流阻障層的製作方法和改變P型延伸電極厚度兩方面來探討。從量測結果可以發現發光效率最高能有效提升47 %,並且從發光強度分布量測實驗上也可以清楚觀察到電流散佈有所改變。雖然從製程方式亦能增強光特性,但是抗靜電保護能力卻無法相對提升。
    接著,我們利用在主動層量子位障中摻雜矽以及改變未摻雜氮化鎵磊晶層厚度來觀察主動區量子侷限史塔克效應的變化。從量測結果發現在主動層量子位障中摻雜矽並不會對量子井中的量子史塔克效應產生影響。而在改變未摻雜氮化鎵磊晶層厚度的實驗中,我們發現元件內部電容值會隨厚度增加而漸少,亦因此降低抗靜電保護能力。一般而言,元件漏電過大會降低電容值,但是在此研究中並非如此。因此我們認為是自發極化場影響相同電場方向的內建電場,使得空乏區寬度受影響進而改變電容值。
    最後,我們利用不同應力釋放層以及不同量子位障厚度來探討量子井中壓電極化的影響。從光學量測實驗中得知,當量子井內壓電極化較大時,元件發光波長偏向長波長,且在波長對電流圖中其因屏蔽效應所造成的藍移量也相對較多。我們利用變溫電致發光量測來探討不同壓電極化的差異。從此實驗中,我們發現隨著溫度升高,壓電極化較強的元件其藍移轉紅移的相對電流值會愈來愈大。主要是因為溫度的升高可以提供載子額外能量使其容易逃脫主動區,導致量子井中的屏蔽效應需要更大的電流注入來完成。藉由此量測手法我們可以初估元件的壓電極化大小。

    In this dissertation, the luminous efficiency and electrostatic discharge protection ability on GaN-based light emitting diodes (LEDs) were investigated and fabricated.
    We can enhance the current spreading ability on LEDs using epitaxial and process technologies. In epitaxial design, we inserted a light-doping n-GaN layer between active region and n-GaN layer. In process design, we used different ways to fabricate the current blocking layer and modulated p-extension electrode thickness. The light output power measured from the LEDs with best current spreading ability is 47 % larger than that of conventional LEDs. In contrast, light output power is much more uniform across the whole chip. Although the optical property can be improved by process technology, the electrostatic discharge (ESD) cannot be enhanced oppositely.
    In second section, we observed the quantum-confined stark effect (QCSE) within the active region by doping Si atom in quantum barriers and modulated the un-doped GaN layer thickness. During the optical experiment, it is found that doping Si atom in quantum barriers cannot affect the QCSE in each quantum well. But, the internal capacitance value decreased as increasing the un-doped GaN layer thickness. Thus, the ESD protection ability decayed. In general, the LED with large leakage will result in low internal capacitance. Therefore, we consider that the variation of internal capacitance could be attributed to an increase in built-in electric field induced by stronger spontaneous polarization field.
    Finally, we investigated the piezoelectric polarization field within each quantum well using different pre-strain interlayer and different quantum barrier thickness. According to the results, the LED with strong piezoelectric polarization field will emit long wavelength. In emission wavelength as a function of injection current characteristic, the strong piezoelectric polarization field also results in severe blue-shift. In order to differentiate the piezoelectric polarization field for the fabricated LEDs, the temperature-dependent EL characteristics were measured and achieved. It is worthy noted that the value of injection current, at which the wavelength of blue-shift changed to red-shift, shifted to larger injection current when the temperature increased. This is because that the carriers would be excited by the higher ambient temperature. Thus, it would escape from the MQWs, and the energy band-gap of MQW caused by QCSE cannot be screened and filled effectively. In other words, it needs higher injection current to provide more carriers which can complete the screening of QCSE of LEDs.

    Contents Abstract (in Chinese) I Abstract (in English) III Acknowledgements V Contents VI Figure Captions IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Characteristics of Gallium-Nitride (GaN)-Based Material 1 1.3 Review of InGaN/GaN Light-Emitting Diodes (LEDs) 5 1.4 Organization of this Dissertation 8 Reference 10 Chapter 2 Improved Current-Spreading Abilities of GaN-Based LEDs by Epitaxial Technique 26 2.1 Motivation 26 2.2 Experimental Results 27 2.3 Electrical and Optical characteristics 28 2.4 Electrostatic discharge (ESD) Analyses 31 2.5 Summary 32 Reference 33 Chapter 3 Improved Current-Spreading Abilities of GaN-Based LEDs by Process Technique 45 3.1 Motivation 45 3.2 Experimental Details (Ar plasma treatment) 45 3.3 Electrical and Optical Characteristics 47 3.4 Operated Temperature Analyses 49 3.5 Reliability Analyses 50 3.6 Summary 51 Reference 52 Chapter 4 Discuss the Variation of the QCSE on the GaN-Based LEDs using Si-Doping Quantum Barriers 70 4.1 Motivation 70 4.2 Experimental Details 70 4.3 Optical and Electrical Characteristics 71 4.4 Schematic Energy-Band Diagram and Simulation of Carrier Distribution 73 4.5 ESD Analyses and Hot-Cold Factor 74 4.6 Summary 76 Reference 77 Chapter 5 Increased Internal Capacitances of GaN-Based LEDs by Thin Un-doped GaN Layer 94 5.1 Motivation 94 5.2 Experimental Details 94 5.3 Optical and Electrical Characteristics 95 5.4 ESD Analyses 97 5.5 Summary 99 Reference 100 Chapter 6 Investigate Piezoelectric Polarization Field within Each Quantum Well 112 6.1 Motivation 112 6.2 Experimental Details (different quantum barrier thickness) 113 6.3 Optical and Electrical Characteristics 114 6.4 temperature-dependent EL measurement 115 6.5 Summary 118 6.6 Experimental Details (different pre-strain interlayer) 119 6.7 Optical and Electrical Characteristics 119 6.8 temperature-dependent EL measurement 120 6.9 Summary 123 Reference 124 Chapter 7 Conclusions and Future Work 142 7.1 Conclusion 142 7.2 Future Work 143 Reference 146 Publication Lists 151 Vita 154

    References
    Chapter 1
    [1] Y. X. Sun, W. S. Chen, S. C. Hung, K. T. Lam, C. H. Liu and S. J. Chang, “GaN-based power flip-chip LEDs with an internal ESD protection diode on Cu sub-Mount,”IEEE Trans. Adv. Packag. vol. 33, p. 433-437, 2010.
    [2] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim and E. F. Schubert, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett., vol. 86, p. 031907, 2005.
    [3] J. Wu ” When group-III nitrides go infrared: New properties and perspectives, “J. Appl. Phys., vol. 106, p. 011101, 2009.
    [4] J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett., vol. 102, p. 151115, 2013.
    [5] K. T. Lam, S. C. Hung, C. F. Shen, C. H. Liu, Y. X. Sun and S. J. Chang, “Effects of the sapphire substrate thickness on the performances of GaN-based LEDs,” Semicond. Sci. Technol., vol. 24, p. 065002, 2009.
    [6] E. F. Schubert, Light-Emitting Diodes 2nd edn., Cambridge, New York, 2006.
    [7] Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon and C. H. Liu, “GaN-Based LEDs With a Chirped Multiquantum Barrier Structure,” IEEE Photonics Technol. Lett., vol. 24, p. 1600-1602, 2012.
    [8] C. Y. Chang, S. J. Chang, C. H. Liu, S. Li and T. K. Lin, ” GaN-based LEDs with double strain releasing MQWs and Si delta-doping layers,” IEEE Photonics Technol. Lett., vol. 24, p. 1809-1811, 2012.
    [9] T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao and Y. Zhou, “Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer,” Appl. Phys. Lett., vol. 100, p. 141106, 2012.
    [10] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett., vol. 100, pp. 111118, 2012.
    [11] H. Yıldırım and B. Aslan, “Binding energies and oscillator strengths of impurity states in wurtzite InGaN/GaN staggered quantum wells,” J. Appl. Phys., vol. 112, p. 053525, 2012.
    [12] K. A. Jones and I. G. Batyrev, “The structure of dislocations in (In,Al,Ga)N wurtzite films grown epitaxially on (0001) or (11-22) GaN or AlN substrates,” J. Appl. Phys., vol. 112, p. 113507, 2012.
    [13] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, Berlin, Germany: Springer-Verlag, 2000.
    [14] L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng and J. M. Li, “Theoretical study of polarization-doped GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 98, p. 101110, 2011.
    [15] A. E. Romanov, T. J. Baker, S. Nakamura and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, p. 023522, 2006.
    [16] L. B. Cen, B. Shen,a Z. X. Qin and G. Y. Zhang, “Influence of polarization induced electric fields on the wavelength and the refractive index of intersubband transitions in AlN/GaN coupled double quantum wells,” J. Appl. Phys., vol. 105, p. 093109, 2009.
    [17] J. Xu, M. F. Schubert, D. Zhu, J. Cho, E. F. Schubert, H. Shim and C. Sone, “Effects of polarization-field tuning in GaInN light-emitting diodes,” Appl. Phys. Lett., vol. 99, p. 041105, 2011.
    [18] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p.011113, 2009.
    [19] S. De, A. Layek, S. Bhattacharya, D. K. Das, A. Kadir, A. Bhattacharya, S. Dhar and A. Chowdhury, “Quantum-confined stark effect in localized luminescent centers within InGaN/GaN quantum-well based light emitting diodes,” Appl. Phys. Lett., vol. 101, p.121919, 2012.
    [20] I. Gorczyca, T. Suski, N. E. Christensen and A. Svane, “Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices,” Cryst. Growth Des., vol. 12, p. 3521-3525, 2012.
    [21] J. H.n Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim and R. D. Dupuis, “Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells,” IEEE J. Sel. Top. Quantum Electron., vol. 15, p. 1080-1091, 2009.
    [22] F. S. Cheregi, A. Vinattieri, E. Feltin, D. Simeonov, J. Levrat,J. -F. Carlin, R. Butté, N. Grandjean and M. Gurioli, “Impact of quantum confinement and quantum confined Stark effecton biexciton binding energy in GaN/AlGaN quantum wells,” Appl. Phys. Lett., vol. 93, p. 152105, 2008.
    [23] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu and S. Nakamura, “Quantum-Confined Stark Effect in an AlGaN/GaN/AlGaN Single Quantum Well Structure,” Jpn. J. Appl. Phys., vol. 38, p. L914-L916, 1999.
    [24] C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yanga, “Influence of the quantum-confined Stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett., vol. 90, p. 183114, 2007.
    [25] M. Y. Ryu, G. G. Shim, P. W. Yu, E. Oh, C. Sone, O. Nam and Y. Park, “Optical properties of InGaN/GaN double quantum wells with varying well thickness,” Solid State Commun., vol. 120, p. 509-514, 2001.
    [26] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, p. 181101, 2010.
    [27] J. Bai, T. Wang and S. Sakai, “Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures,” J. Appl. Phys., vol. 88, p. 4729-4733, 2000.
    [28] B. C. Chen, C. Y. Chang, Y. K. Fu, K. F. Huang, Y. H. Lu and Y. K. Su, “Improved Performance of InGaN/GaN Light-Emitting Diodes With Thin Intermediate Barriers,” IEEE Photonics Technol. Lett., vol. 23, p. 1682-1684, 2011.
    [29] Y. K. Kuo, T. H. Wang and J. Y. Chang, “Blue InGaN Light-Emitting Diodes With Multiple GaN-InGaN Barriers,” IEEE J. Quantum Electron., vol. 48, p. 946-951, 2012.
    [30] E. J. Shin, J. Li, J. Y. Lin and H. X. Jiang, “Barrier-width dependence of quantum efficiencies of GaN/AlxGa1-xN multiple quantum wells,” Appl. Phys. Lett., vol. 77, p. 1170-1172, 2000.
    [31] D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping,” Appl. Phys. Lett., vol. 96, p. 121110, 2010.
    [32] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, ““Blue” temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett., vol. 71, no. 5, p. 569-571, 1997.
    [33] J. Cao, D. Pavlidis, A. Eisenbach, A. Philippe, C. Bru-Chevallier, and G. Guillot, “Photoluminescence properties of GaN grown on compliant silicon-on-insulator substrates,” Appl. Phys. Lett., vol. 71, p. 3880-3882, 1997.
    [34] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes," IEEE J. Sel. Top. Quan. Electron., vol. 8, p. 278-283, 2002.
    [35] R. Ghosh and D. Basak, “Quantum confinement of excitons in dendrite-like GaN nanowires,” J. Appl. Phys., vol. 98, p. 086104, 2005.
    [36] E. Sari, S. Nizamoglu, T. Ozel, and H. V. Demir, “Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blueshift,” Appl. Phys. Lett., vol. 90, p. 011101, 2007.
    [37] J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett., vol. 92, p. 101113, 2008.
    [38] C. F. Lu, C. F. Huang, Y. S. Chen, and C. C. Yang, “Dependence of spectral behavior in an InGaN/GaN quantum-well light-emitting diode on the prestrained barrier thickness,” J. Appl. Phys., vol. 104, p. 043108, 2008.
    [39] J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron., vol. 15, p. 1080-1091, 2009
    [40] E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys., vol. 112, p. 013107, 2012.
    [41] C. Lu, L. Wang, J. Lu, R. Li, L. Liu, D. Li, N. Liu, L. Li, W. Cao, W. Yang, W. Chen, W. Du, C. T. Lee, and X. Hu, “Investigation of the electroluminescence spectrum shift of InGaN/GaN multiple quantum well light-emitting diodes under direct and pulsed currents,” J. Appl. Phys., vol. 113, p. 013102, 2013.
    [42] A. Chakraborty, L. Shen, and U. K. Mishra, “Interdigitated multipixel arrays for the fabrication of high-power light-emitting diodes with very low series resistances, reduced current crowding, and improved heat sinking,” IEEE Trans. Electron Devices, vol. 54, p. 1083-1090, 2007.
    [43] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507, 2007.
    [44] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol. 93, p. 041102, 2008.
    [45] Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett., vol. 95, p. 011116, 2009.
    [46] B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett., vol. 91, p. 181103, 2007.
    [47] K. T. Delaney, P. Rinke, and C. G. Van De Walle, “Auger recombination rates in nitrides fro first principles,” Appl. Phys. Lett., vol. 94, p. 191109, 2009.
    [48] Y. C. Shen, G. O. Müller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, p. 1411013, 2007.
    [49] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the jouleheating on the quantum effciency and choice of thermal conditionsfor highpower blue InGaN/GaN LEDs,” Semiconductors, vol. 40, p. 605–610, 2006.
    [50] Y. Yang, X. A. Cao, and C. H. Yan, “Rapid efficiency roll-off in highquality green light-emitting diodes on freestanding GaN substrates,” Appl. Phys. Lett., vol. 94, p. 041117, 2009.
    [51] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInNÕGaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett., vol. 78, p. 3337-3339, 2001.
    [52] X. Guo and E. F. Schubert, “Current crowding in GaNÕInGaN light emitting diodes on insulating substrates,” J. Appl. Phys., vol. 90, p. 4191-4195, 2001.
    [53] V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 97, p. 251110, 2010.
    [54] S. Hwang and J. Shim, “A method for current spreading analysis and electrode pattern design in light-emitting diodes,” IEEE Trans. Electron Devices, vol. 55, p. 1123-1128, 2008.
    [55] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Dev. Lett., vol. 24, p. 129-131, 2003.
    [56] G. Meneghesso, S. Podda and M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs”, Microelectron. Reliability, vol. 41, p. 1609-1614, 2001.
    [57] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen and W. L. Li, "ESD engineering of nitride-based LEDs", IEEE Tran. Dev. Mater. Reliability, vol. 5, p. 277-281, 2005.
    [58] M. Meneghini, A. Tazzoli, R. Butendeich, B. Hahn, G. Meneghesso and E. Zanoni, “Soft and hard failures of InGaN-based LEDs submitted to electrostatic discharge testing”, IEEE Electron Dev. Lett., vol. 31, p. 579-581, 2010.
    [59] T. Inoue, ”Light-Emitting Devices” (in Japanese), Japanese Patent H11-040848, 1999.
    [60] S. C. Shei, J. K. Sheu and C. F. Shen, “Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes”, IEEE Electron Dev. Lett., vol. 28, p. 346-349, 2007.
    [61] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko and J. K. Sheu, "Highly reliable nitride-based LEDs with internal ESD protection diodes", IEEE Tran. Dev. Mater. Reliability, vol. 6, p. 442-447, 2006.
    [62] S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim and J. S. Park, “The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties”, Appl. Phys. Lett., vol. 94, p. 131106, 2009.
    [63] D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 99, p. 131106, 2011.
    [64] D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S. H. Han, M. H. Kim, C. Sone, S. Jae Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett., vol. 100, p. 081106, 2012.
    [65] D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 99, p. 041112, 2011.
    [66] C. Huh, W. J. Schaff, L. F. Eastman, and S. J. Park, “Temperature dependence of performance of InGaN/GaN MQW LEDs with different indium compositions,” IEEE Electron Device Lett., vol. 25, p. 61-63, 2004.
    [67] C. Huh, and S. J. Park, “Effects of temperature on InGaN/GaN LEDs with different MQW structures,” Solid-State Electron., vol. 7, p. G266-G268, 2004.
    [68] K. S. Kim, J. H. Kim, S. J. Jung, Y. J. Park, and S. N. Cho, “Stable temperature characteristics of InGaN blue light emitting diodes using AlGaN/GaN/InGaN superlattices as electron blocking layer,” Appl. Phys. Lett., vol. 96, p. 091104, 2010.
    [69] C. H. Wang, J. R. Chen, C. H. Chiu, H. C. Kuo, Y.-L. Li, T. C. Lu, and S. C. Wang, “Temperature-dependent electroluminescence efficiency in blue InGaN/GaN light-emitting diodes with different well widths,” IEEE Photonics Technol. Lett., vol. 22, p. 236-238, 2010.
    [70] M. Meneghini, L. R. Trevisanello, U. Zehnder, T. Zahner, U. Strauss, G. Meneghesso, and E. Zanoni, “High-temperature degradation of GaN LEDs related to passivation,” IEEE Trans. Electron Devices, vol. 53, p. 2981-2987, 2006.

    Chapter2
    [1] H. S. Kim, S. J. Park, H. S. Hwang and N. M. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs”, Appl. Phys. Lett., Vol. 81, p. 1326-1328, 2002
    [2] X. Guo and E. F. Schubert “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys., Vol. 90, p. 4191-4195, 2001
    [3] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, “Highly reliable nitride based LEDs with SPS+ITO upper contacts”, IEEE J. Quan. Electron., vol. 39, p. 1439-1443, 2003
    [4] J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN/GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer” IEEE Photonics Technol. Lett., vol. 13, p. 1164-1166, 2001.
    [5] Z. H. Zhang, S. T. Tan, W. Liu, Z. Ju, K. Zheng, Z. Kyaw, Y. Ji, N. Hasanov, X. W. Sun, and H. V. Demir, “Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current spreading layer,” Opt. Express, vol. 21, p. 4958-4969, 2013.
    [6] H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett., vol. 32, p. 1409-1411, 2011.
    [7] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen and W. L. Li, “Nitride-based LEDs with n--GaN current spreading layers”, IEEE Electron. Dev. Lett., vol. 26, p. 891-893, 2005.
    [8] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo and S. L. Wu, "GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer", IEEE J. Quan. Electron., vol. 44, p. 916-921, 2008.
    [9] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, "Influence of Si-doping on the characteristics of InGaN/GaN multiple quantum well blue light emitting diodes", IEEE J. Quan. Electron., vol. 38, p. 446-450, 2002.
    [10] S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim and J. S. Park, “The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties”, Appl. Phys. Lett., vol. 94, p.131106, 2009.

    Chapter3
    [1] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, “Improved light-output power of GaN leds by selective region activation,” IEEE Photonics Technol. Lett., vol. 16, p. 1444-1446, 2004.
    [2] C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Appl. Phys. Lett., vol. 93, p. 203103, 2008.
    [3] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, p. 2248-2250, 2002.
    [4] S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of Electrostatic Discharge Robustness Induced by the Surface Morphology of High Power Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 49, p. 056602, 2010.
    [5] M. Meneghini, A. Tazzoli, R. Butendeich, B. Hahn, G. Meneghesso, and E. Zanoni, “Soft and hard failures of InGaN-based LEDs submitted to electrostatic discharge testing”, IEEE Electron Dev. Lett., Vol. 31, p. 579-581, 2010.
    [6] K. M. Uang, S. J. Wang, T. M. Chen, W. C. Lee, S. L. Chen, Y. Y. Wang, and H. Kuan, “Enhanced performance of vertical GaN-based light-emitting diodes with a current-blocking layer and electroplated nickel substrate,” Jpn. J. Appl. Phys., vol. 48, p. 102101, 2009.
    [7] C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photonics Technol. Lett., vol. 21,p. 996-998, 2009.
    [8] T. Kawamuraa, Y. Kangawab and K. Kakimoto, “Investigation of thermal conductivity of GaN by molecular dynamics,” J. Cryst. Growth, vol. 284, p. 197-202, 2005.
    [9] H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, “Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film,” Rev. Sci. Instrum., vol. 79,p. 054902, 2008.
    [10] H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express, vol. 19, p. 2886, 2011.
    [11] V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 97, p. 251110, 2010.

    Chapter4
    [1] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes,” Electrochem. Solid State Lett., vol. 10, p. H175-H177, 2007.
    [2] H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J. O Song, Y. H. Lee, and T. Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid State Lett., vol. 13, p. H237-H239, 2010.
    [3] C. M. Lee, C. C. Chuo, Y. C. Liu, I L. Chen, and J. I. Chyi, “InGaN–GaN MQW LEDs with current blocking layer formed byselective activation,” IEEE Electron Dev. Lett., vol. 25, p. 384-386, 2004.
    [4] C. F. Tsai, Y. K. Su, C. L. Lin, “Improvement in the light output power of GaN-based light emitting diodes by natural-cluster silicon dioxide nanoparticles as the current blocking layer,” IEEE Photonics Technol. Lett., vol. 21, p. 996-998, 2009.
    [5] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaNÕGaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, p. 2248-2250, 2002.
    [6] M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett., vol. 21, p. 688-690, 2009.
    [7] C. S. Xia, Z. M. Simon Li, W. Lu, Z. H. Zhang, Y. Sheng, W. D. Hu and L. W. Cheng, “Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer,” J. Appl. Phys., vol. 111, p. 094503, 2012.
    [8] C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett., vol. 97, p. 261103, 2010.
    [9] Y. K. Kuo, J. Y. Chang, and M. C. Tsai, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett., vol. 35, p. 3285-3287, 2010.
    [10] R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, and G. C. Chi, “Improvement of near-ultraviolet InGaN–GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature,” IEEE Photonics Technol. Lett., vol. 15, p. 1342-1344, 2003.
    [11] H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett., vol. 96, p. 101102, 2010.
    [12] S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 231123, 2009.
    [13] H. K. Kim, H. G. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar and C. H. Hong, “Enhanced light output power of GaN-based light emitting diodes with overcut sideholes formed by wet etching,” Solid-State Electron., vol. 54, p. 575-578, 2010
    [14] J. H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner, D. Yoo and R. D. Dupuis, “Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 20, p. 1769-1771, 2008
    [15] Kwon M K, Park I K, Baek S H, Kim J Y and Park S J, “Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode,” J. Appl. Phys., vol. 97, p. 106109, 2005.
    [16] H. Hung, K. T. Lam, S. J. Chang, C. H. Chen, H. Kuan and Y. X. Sun, “InGaN/GaN multiple-quantum-well LEDs with Si-doped barriers,” J. Electrochem. Soc., vol. 155, p. H455-H458, 2008.
    [17] H. Haratizadeh, B. Monemar, P. P. Paskov, J. P. Bergman, M. Iwaya, S. Kamiyama, H. Amano and I. Akasaki, “Photoluminescence study of Si-doped GaN/Al0.07Ga0.93N multiple quantum wells with different dopant position,” Appl. Phys. Lett., vol. 84, p. 5071-5073, 2004.
    [18] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate,” IEEE Trans. Electron Devices, vol. 57, p. 157-163, 2010.
    [19] M. C. Tsai, S. H. Yen, S. H. Chang, and Y. K. Kuo, “Effect of spontaneous and piezoelectric polarization on optical characteristics of ultraviolet AlGaInN light-emitting diodes” Opt. Commun. ,vol. 282, p. 1589-1592, 2009.
    [20] S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. Kim and S. J. Park, “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 18, p. 1276-1278, 2006.
    [21] E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., vol. 90, p. 031102, 2006.
    [22] C. Huh and S. J. Park, “Effects of Temperature on InGaNÕGaN LEDs with different MQW structures,” Electrochem. Solid State Lett., vol. 7, p. G266-G268, 2004.
    [23] C. Huh, W. J. Schaff, L. F. Eastman, and S. J. Park, “Temperature dependence of performance of InGaN/GaN MQW LEDs with different indium compositions,” IEEE Electron Dev. Lett., vol. 25, p. 61-63, 2004.

    Chapter5
    [1] Z. Zheng, Z. Chen, Y. Xian et al., “Enhanced electrostatic discharge properties of nitride-based light-emitting diodes with inserting Si-delta-doped layers,” Appl. Phys. Lett., vol. 99, p. 111109, 2011.
    [2] C. Jia, C. Zhong, T. Yu, et al., “Improvement of electrostatic discharge characteristics of InGaN/GaN MQWs light-emitting diodes by inserting an n(+)-InGaN electron injection layer and a p-InGaN/GaN hole injection layer,” Semicond. Sci. Technol., vol. 27, p. 065008, 2012.
    [3] S. M. Kim, H. S. Oh, J. H. Baek, et al., “Negative-voltage electrostatic discharge characteristics of blue light-emitting diodes using an extended n-electrode onto plasma treated p-GaN,” Appl. Phys. Lett., vol. 4, p. 072102, 2011.
    [4] F. I Lai, Y. L. Hsieh, and W. T. Lin, “Enhancement in the extraction efficiency and resisting electrostatic discharge ability of GaN-based light emitting diode by naturally grown textured surface,” Diam. Relat. Mat., vol. 20, p. 770-773, 2011.
    [5] S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim and J. S. Park, “The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties”, Appl. Phys. Lett., vol. 94, p.131106, 2009.
    [6] Y. H. Liu, H. D. Li, J. P. Ao, Y. B. Lee, T. Wang, and S. Sakai, “Influence of undoped GaN layer thickness to the performance of AlGaN/GaN-based ultraviolet light-emitting diodes,” J. Cryst. Growth, Vol. 268, p. 30, 2004.
    [7] S. C. Wei, Y. K. Su, S. J. Chang, Shi-Ming Chen, and Wen-Liang Li, “Nitride-based MQW LEDs with multiple GaN–SiN nucleation layers,” IEEE Trans. Electron Devices, vol. 52, p. 1104, 2005.
    [8] N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, p. 1274, 2000.
    [9] L. Zhou, M. R. McCartney, D. J. Smith, A. Mouti, E. Feltin, J. F. Carlin, and N. Grandjean, “Observation of dodecagon-shape V-defects in GaN/AlInN multiple quantum wells,” Appl. Phys. Lett., vol. 97, p. 161902, 2010.
    [10] M. F. Schubert, Q. Dai, J. K. Kim, E. Fred Schubert, J. Piprek and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507, 2007.
    [11] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen H. C. Kuo, and S. C. Wang, “Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 96, p. 231101, 2010.
    [12] Donald A. Neamen, Semiconductor Physics and Devices, 3rd edition,. McGraw-Hill , New York.
    [13] B. Monemar and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron., vol. 24, p. 239-290, 2000.
    [14] J. H. Son and J. L. Lee, “Numerical analysis of efficiency droop induced by piezoelectric polarization in InGaN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 97, p. 032109, 2010.
    [15] M. H. Kim, W. Lee, D. Zhu, M. F. Schubert, J. K. Kim, E. F. Schubert, and Y. Park, “Partial polarization matching in GaInN-based multiple quantum well blue LEDs using ternary GaInN barriers for a reduced efficiency droop,” IEEE J. Sel. Top. Quantum Electron., vol. 15, p. 1122-1127, 2009.

    Chapter6
    [1] Z. H. Zhang, S. T. Tan, Z. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme,X. W. Sun,and H. Volkan, "On the Effect of Step-Doped Quantum Barriers inInGaN/GaN Light Emitting Diodes," J. Disp. Technol., vol. 9, pp. 226-233, 2013.
    [2] S. Choi, H. J. Kim, S. S. Kim, J. Liu, J. Kim, J. H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett., vol. 96, p. 221105, 2010.
    [3] B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett., vol. 91, p. 181103, 2007.
    [4] R. A. Arif, Y. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett., vol. 91, p. 091110, 2007.
    [5] R. A. Arif, H. Zhao, Y. K. Ee, and N. Tansu, “Spontaneous emission and characteristics of staggered InGaN quantum-well light-emitting diodes,” IEEE J. Quantum Electron., vol. 44, p. 573-580, 2008.
    [6] J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 15, p. 1080-1091, 2009.
    [7] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol., vol. 27, p. 024001-024014, 2012.
    [8] D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A, vol. 30, p. 041513-041520, 2012.
    [9] R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 99, p. 171115, 2011.
    [10] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN lightemitting diodes with large overlap quantum wells,” Opt. Express, vol. 19, p. A991-A1007, 2011.
    [11] H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett., vol. 97, p. 131114, 2010.
    [12] H. Zhao andN. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys., vol. 107, p. 113110, 2010.
    [13] L. Zhang, K. Cheng, H. Liang, R. Lieten, M. Leys, and G. Borghs, “Photoluminescence studies of polarization effects in InGaN/(In)GaN multiple quantum well structures,” Jpn. J. Appl. Phys., vol. 51, p. 030207, 2012.
    [14] J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys., vol. 110, p. 113110, 2011.
    [15] P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112-2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett., vol. 100, p. 021104, 2012.
    [16] H. P. Zhao, G. Y. Liu, X.-H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” Optoelectron., vol. 3, p. 283-295, 2009.
    [17] C. T. Liao, M. C. Tsai, B. T. Liou, S. H. Yen, and Y. K. Kuo, “Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well,” J. Appl. Phys., vol. 108, p. 063107, 2010.
    [18] R. A. Arif, H. Zhao, and N. Tansu, “Type-II InGaN-GaNAs quantum wells for lasers applications,” Appl. Phys. Lett., vol. 92, p. 011104, 2008.
    [19] S. H. Park, Y. T. Lee, and J. Park, “Optical properties of type-II InGaN/GaAsN/GaN quantum wells,” Opt. Quantum Electron., vol. 41, p. 779-785, 2009.
    [20] J. Park and Y. Kawakami, “Photoluminescence property of InGaN single quantum well with embedded AlGaN layer,” Appl. Phys. Lett., vol. 88, p. 202107, 2006.
    [21] Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E, vol. 44, p. 821-825, 2012.
    [22] H. Zhao, R.A.Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN-AlGaN quantum wells for lasers and lightemitting diodes,” IEEE J. Quantum Electron., vol. 45, no. , p. 66-78, 2009.
    [23] C. L. Tsai, G. C. Fan, and Y. S. Lee, “Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes,” Appl. Phys. A, vol. 104, p. 319, 2011.
    [24] T. H. Chiang, Y. Z. Chiou, S. J. Chang, T. K. Lin, and S. P. Chang, “Effect of silicon doped quantum barriers on nitride-based light emitting diodes,” J. Electrochem. Soc., vol. 158, p. H836–H839, 2011.
    [25] C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, and H. C.Yang, “Hole transport improvement in InGaN/GaNlight-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett., vol. 99, p. 171106, 2011.
    [26] S. H. Park, D. Ahn, B. H. Koo, and J. W. Kim, “Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency,” Appl. Phys. Lett., vol. 95, p. 063507, 2009.
    [27] S. H. Park,D.Ahn, B.H.Koo, and J. E.Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett., vol. 96, p. 051106, 2010.
    [28] S. H. Park, J. Park, and E. Yoon, “Optical gain in InGaN/GaN quantum well structures with embedded AlGaN layer,” Appl. Phys. Lett., vol. 90, p. 023508, 2007.
    [29] M. C. Tsai, S. H. Yen, Y. C. Lu, and Y. K. Kuo, “Numerical study of blue InGaN light-emitting diodes with varied barrier thicknesses,” IEEE Photonics Technol. Lett., vol. 23, no. , p. 76–78, 2011.
    [30] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, p. 181101, 2010.
    [31] G. Liu, J. Wu, Y. Lu, G. Zhao, C. Gu, C. Liu, L. Sang, S. Yang, X. Liu, Q. Zhu, and Z. Wang, “Two-dimensional electron gas mobility limited by barrier and quantum well thickness fluctuations scattering in multi-quantum wells,” Appl. Phys. Lett., vol. 100, p. 162102, 2012.
    [32] J. Xu, M. F. Schubert, D. Zhu, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Effects of polarization-field tuning in GaInN light-emitting diodes,” Appl. Phys. Lett., vol. 99, p. 041105, 2011.
    [33] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer,” Appl. Phys. Lett., vol. 97, p. 251114, 2010.
    [34] C. F.Huang,C.Y.Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, p. 051121, 2007.
    [35] Y. J. Yu, M. Y. Ryu, P. W. Yu, D. J. Kim, and S. J. Park, “Optical investigation of InGaN/GaN quantum well structures with various barrier widths,” J. Kor. Phys. Soc., vol. 38, p. 134–137, 2001.
    [36] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer,” Appl. Phys. Lett., vol. 97, p. 251114, 2010.
    [37] E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University, Cambridge (2006).
    [38] E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett., vol. 80, p. 977, 2002.

    Chapter7
    [1] A. S. Pavluchenko, I. V. Rozhansky, and D. A. Zakheim,,” Manifestation of the injection mechanism of efficiency droop in the temperature dependence of the external quantum efficiency of AlInGaN-based light-emitting diodes,” Semiconductors vol. 43, p. 1391-1395, 2009.
    [2] E. Y. Lin, C. Y. Chen, T. S. Lay, Z. X. Peng, T. Y. Lin, T. C. Wang and J. D. Tsay, “Optical polarization and internal quantum efficiency for InGaN quantum wells on a-plane GaN,” Physica B, vol. 405, p. 1857-1860, 2010.
    [3] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes,” Electrochem. Solid State Lett., vol. 10 , p. H175-H177, 2007.
    [4] T. H. Chiang, Y. Z. Chiou, S. J. Chang, C. K. Wang, T. K. Ko, T. K. Lin, C. J. Chiu, and S. P. Chang, “Improved optical and ESD characteristics for GaN-based LEDs with an n--GaN Layer,” IEEE Trans. Device Mater. Reliab., vol. 11, p. 76-80, 2011.
    [5] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, p. 181101, 2010.
    [6] H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett., vol. 96, p. 101102, 2010.
    [7] K. B. Lee, P. J. Parbrook, T. Wang, J. Bai, F. Ranalli, R. J. Airey and G. Hill, “Effect of the AlGaN electron blocking layer thickness on the performance of AlGaN-based ultraviolet light-emitting diodes,”J. Cryst. Growth, vol. 311, p. 2857-2859, 2009
    [8] G. H. Gainer, Y. H. Kwon, J. B. Lam, S. Bidnyk, A. Kalashyan, and J. J. Song, “Well-thickness dependence of emission from GaNÕAlGaN separate confinement heterostructures,” Appl. Phys. Lett., vol. 78, p. 3890-3892, 2001.
    [9] S. Huang, Y. Xian, B. Fan, Z. Zheng, Z. Chen, W. Jia, H. Jiang, and G.Wang, “Contrary luminescence behaviors of InGaN/GaN light emitting diodes caused by carrier tunneling leakage,” Appl. Phys. Lett., vol. 110, p. 064511, 2011.
    [10] S. K. Shee, Y.H. Kwon, J.B. Lam, G.H. Gainer, G.H. Park, S.J. Hwang, B.D. Little, and J.J. Song, “MOCVD growth, stimulated emission and time-resolved PL studies of InGaN/(In)GaN MQWs: well and barrier thickness dependence,” J. Cryst. Growth, Vol. 221, p. 373-377, 2000.
    [11] J. Bai, T. Wang, and S. Sakai, “Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures,” J. Appl. Phys., vol. 88, p. 4729-4733, 2000.
    [12] M. C. Tsai, S. H. Yen, Y. C. Lu, and Y. K. Kuo, “Numerical study of blue InGaN light-emitting diodes with varied barrier thicknesses,” IEEE Photonics Technol. Lett., vol. 23, pp. 76–78, 2011.
    [13] B. C. Chen, C. Y. Chang, Y. K. Fu, K. F. Huang, Y. H. Lu, and Y. K. Su, “Improved performance of InGaN/GaN light-emitting diodes with thin intermediate barriers,” IEEE Photonics Technol. Lett., vol. 23, pp. 1682-1684, 2011.

    下載圖示 校內:立即公開
    校外:2016-07-17公開
    QR CODE