簡易檢索 / 詳目顯示

研究生: 廖子謙
Liao, Tzu-Chien
論文名稱: 錐形介電彈性體組於鞋底發電裝置的應用
The Application of Cone-type Dielectric Elastomers in Shoe Generator
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 介電彈性體電流驅動聚合物鞋底發電裝置
外文關鍵詞: Dielectric elastomer, Electroactive polymer, Shoe generator
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Thomas等人將兩個錐形介電彈性體的內框環結合製成了可自充式錐形介電彈性體,本論文將該裝置置於鞋底的後腳跟及前腳掌處,提出了將該裝置應用在鞋底發電裝置的可能性。

    可自充式介電彈性體應用在鞋底發電裝置的最大好處是可以充分利用人類行走的每一個階段來發電,一般鞋底發電裝置是利用腳跟落地時產生的能量來發電,而本論文提出的發電裝置是利用腳跟落地、重心轉移至前腳掌、腳掌離地等不同階段踩壓的能量來發電。

    本論文首先推導了錐形介電彈性體的電能公式,接著規劃錐形介電彈性體組應用在鞋底發電裝置上時的兩種發電模式,接著找出合適的材料以及適當的外型尺寸。而後為了增加電能產量,本論文將兩個錐形介電彈性體組上下合併並且考慮將錐形介電彈性體薄膜堆疊多層以增加電能產量。同時計算堆疊不同厚度的薄膜時壓縮薄膜所需要的外力。最後將參數帶入前面所推出的式子並計算得到兩種不同發電模式下疊層1毫米的錐形介電彈性體組每一步分別可產生約0.142瓦及0.07瓦的能量。

    Thomas et al. developed Self-priming dielectric elastomer generators by combining two Cone-type dielectric elastomers. In this paper, we analyzed the feasibility of the application of cone-type dielectric elastomers in shoe generator by fitting the Self-priming dielectric elastomer generators in the heel and forefoot of shoes.
    Making full use of every step to generate energy is the great advantage of this application. Normal shoe generators scavenge energy by heel striking the ground. In this paper, cone-type dielectric elastomer generator scavenges energy by not only heel striking the ground, but also weight transferring from heel to forefoot and foot leaving the ground.
    In this paper we first did the derivation of the electric power formula of cone-type dielectric elastomer and find out two power generation modes. Then found appropriate material and size of the cone-type dielectric elastomer. We also combined two cone-type dielectric elastomer generators and stacked the dielectric elastomer membranes in order to increase the amount of energy. Also we calculated the required force necessary for compressing the membranes in stacking different layers. Finally we found out that cone-type dielectric elastomer generator with membrane stacking to 1mm in two power generation modes can respectively generate 0.142W and 0.07W every step.

    摘要 I ABSTRACT II 誌謝 III 摘要目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1前言 1 1-2文獻回顧 3 第二章 研究架構 12 2-1研究流程 12 2-2 本文基本理論與假設 13 第三章 研究內容及方法 16 3-1介電彈性體基本操作原理 16 3-2介電彈性體模型推導 18 3-3介電彈性體發電原理與發電模型推導 22 3-3-1 介電彈性體發電原理 22 3-3-2 介電彈性體發電模型推導 24 3-4錐形介電彈性體組發電循環介紹 28 3-5 基於錐形介電彈性體之可自充式介電彈性體 30 第四章 研究計算與數據 33 4-1錐形介電彈性體發電組應用於鞋底發電 33 4-2錐形介電彈性體之發電模型推導 36 4-3錐形介電彈性體發電組之材料及尺寸設置 39 4-4薄膜堆疊計算 43 4-5 兩種發電模式比較與計算結果 48 4-5-1薄膜輸出電能與輸入電壓關係圖 48 4-5-2 第一種發電模式:獨立式 51 4-5-3 第二種發電模式:連動式 53 4-6發電效率與電流計算 55 4-6-1 發電效率計算 55 4-6-2 輸出電流計算 56 第五章 結論與建議 57 5-1結論 57 5-2 未來研究方向與建議 59 參考文獻 62

    [1] Bar-Cohen, Y., (2004), Electroactive Polymer (EAP) Actuators as
    Artificial Muscles - Reality, Potential and Challenges(2nd ed.), Bellingham, Wash: SPIE Press.

    [2] Pelrine, R., R. Kornbluh and J. Joseph (1998), “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sensor and Actuators A:Physical , 64 (1) pp.77~86.

    [3] Osterbacka, R., C. P. An, X. M. Jiang and Z. V. Vardeny (2000), “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals,” Science, 287 (5454) pp.839~842.

    [4] Kornbluh, R., E. Joseph and B. McCoy (2011), “A scalable solution to harvest kinetic energy,” SPIE - Solar & Alternative Energy, Published online, DOI: 10.1117/2.1201106.003749.

    [5] Ma, Z., J. Scheinbeim, J. Lee and B. Newman (2003), “High field electrostrictive response of polymers,” Journal of Polymer Science Part B: Polymer Physics, 32 (16) pp.2721~2731.

    [6] Shankar, R., T. Ghosh and R. Spontak (2009), “Mechanical and actuation behavior of electroactive nanostructured polymers,” Sensors and Actuators A: Physical, 151 (1) pp.46~52.

    [7] Jean-Sébastien, P. and D. Steven (2006), “Large-scale failure modes of dielectric elastomer actuators,” International Journal of Solids and Structures, 43 (25-26) pp.7727~7751.

    [8] Ha, S. M., W. Yuan, Q. Pei, R. Pelrine and S. Stanford (2006), “Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles,” Advanced Materials, 18 (7) pp.887~891.

    [9] Pelrine, R., R. Kornbluh, Q. Pei and J. Joseph (2000), “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%,” Science, 287 (5454) pp.836~839.

    [10] Zang,R., P. Lochmatter and A. Kunz (2006), Dielectric Elastomer Spring Roll Actuators for a Portable Force Feedback Device, Washington, DC: IEEE Computer Society Press.

    [11] Eckerle, J., J.S. Stanford, J. Marlow, R. Schmidt, S. Oh, T. Low and V. Shastri. (2001) “A biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles,” Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, 4332 pp.269~280.

    [12] Keplinger, C., T. Li, R. Baumgartner, Z. Suo and S. Bauer (2012), “Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation,” Soft Matter, 8 (2) pp.285~288.

    [13] Senders, C., T. Tollefson, S. Curtiss, A. Wong-Foy and H. Prahlad (2010), “Force Requirements for Artificial Muscle to Create an Eyelid Blink With Eyelid Sling,” Archives of Facial Plastic Surgery, 12 (1) pp.30~36.

    [14] Prahlad, H., R. Kornbluh, R. Pelrine, S. Stanford, J. Eckerle and S. Oh (2005), “Polymer power: dielectric elastomers and their applications in distributed actuation and power generation,” International Conference on Smart Materials Structures and System, 13 (650) pp.100~107.

    [15] Chiba, S., R. Kornbluh and R. Pelrine (2008), “Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles,” Electroactive Polymer Actuators and Devices, 6927 (15) pp.1~9.

    [16] Jean-Mistral, C., S. Basrour and C. Jean-Jacques (2008), “Dielectric polymer: scavenging energy from human motion,” Electroactive Polymer Actuators and Devices, 6927 (16) pp.1~10.

    [17] Pelrine,R., R. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei and S. Stanford (2001), “Dielectric elastomers: generator mode fundamentals and applications,” Smart Structures and Materials, 4329 pp.148~156.

    [18] Goulbourne, N.C., E.M. Mockensturm and M.I. Frecker (2005), “A Nonlinear Model for Dielectric Elastomer Membranes,” Journal of Applied Mechanics, 72 (6) pp.899~807.

    [19] Yeoh, O.H. (1996), “Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates,” Chemistry and Materials Science, 31 (2) pp.281~289.

    [20] Macosko, C.W. (1994), Rheology: principles, measurements and applications (1st ed.), New York: Wiley –VCH Press.

    [21] Liu, I. (2011), A note on the Mooney-Rivlin material model, Federal University of Rio de Janeiro, Institute of Mathematics, Brasil.

    [22] Zhu, Y., H. Wang, D. Zhao and J. Zhao (2011), “Energy conversion analysis and performance research on a cone-type dielectric electroactive polymer generator,” Smart Materials and Structures, 20 (11) pp.1~8.

    [23] Mckay, T.G., B.M. O’Brien, E.P. Calius and I.A. Anderson (2011), “Soft generators using dielectric elastomers,” Applied Physics Letters, 98 (14) pp.3~6.

    [24] Wissler, M. and E. Mazza (2007), “Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators,” Sensors and Actuators A: Physical, 134 (2) pp.494~504.

    下載圖示 校內:2017-07-16公開
    校外:2017-07-16公開
    QR CODE