簡易檢索 / 詳目顯示

研究生: 簡博濂
Jian, Po-Lien
論文名稱: 電漿電解拋光技術之研究:拋光效果之模擬與統計分析
Studies on the Plasma Electrolytic Polishing Technique: Simulation and Statistical Analysis of Polishing Effect
指導教授: 談永頤
Tam, S.Y.W
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: PEP電漿電解拋光COMSOL粗糙度SUS304
外文關鍵詞: PEP, Plasma electrolytic polishing, COMSOL, roughness, SUS304
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿電解拋光(PEP)是一種創新的表面處理技術,相較於傳統的電解拋光,PEP能夠實現更低的表面粗糙度和更高的光澤度,並且可以提高材料的耐腐蝕性。在本文的第一部分,我們將從宏觀和微觀兩個角度介紹PEP技術的基本原理。在第二部分中,我們進一步討論了PEP工藝的典型特徵和現象,並對主要參數進行了詳細的分析,包括材料去除率、電解液和工作電壓等。最後,在COMSOL®中類比了粗糙度的變化,並對所選加工材料的PEP表面粗糙度尺寸進行了統計分析。綜合以上結果,本文為PEP技術的應用提供了重要參考。

    Plasma Electrolytic Polishing (PEP) is a novel surface treatment technology that enhances corrosion resistance and achieves low roughness and high gloss, providing numerous advantages over electropolishing. This study presents the fundamental principles of PEP technology, including its macro and micro mechanisms. The paper summarizes the typical features and phenomena of the polishing process and discusses critical parameters such as material removal rate, electrolyte, and operating voltage. Using COMSOL®, the study simulates the effect of these parameters on roughness change and statistically reviews the impact of parameter changes on the surface roughness of the selected processing material.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XII CHAPTER 1 電漿電解拋光(PEP)簡介 1 1.1 電漿電解拋光原理 2 CHAPTER 2 電漿電解拋光技術在文獻之參考 8 2.1 輝光光譜與PEP關係 8 2.2 PEP的物理性質 11 2.3 電漿拋光之化學反應 17 2.3.1 法拉第的電解定律 21 2.4 拋光模擬文獻參考 22 2.5 總結 24 CHAPTER 3 模型簡介 26 3.1 COMSOL簡介 26 3.2 模型構造建置 26 3.3 亂數函數在本模型的設計 29 3.3.1 空間頻率 30 3.3.2 基本波 31 3.3.3 基本波的相關振幅 33 3.3.4 與離散餘弦和傅里葉變換的關係 33 3.4 算術平均高度 35 3.5 數值積分 36 3.6 拋光模型之參數 39 3.6.1 拋光模型之參數 39 3.6.2 模擬結果之示意圖 45 3.7 假說檢定(英語:HYPOTHESIS TESTING) 52 3.7.1 獨立樣本 t 檢驗 54 CHAPTER 4 模擬的結果與統計 57 4.1 模擬結果 57 4.2 模型模擬之統計 64 4.3 數據推論 69 4.4 總結 72 CHAPTER 5 結論 73 參考文獻 75 附錄 79 T檢定值表 79

    [1] Parfenov, E. V., Mukaeva, V. R., & Farrakhov, R. G. (2019). Plasma electrolytic treatments for advanced surface finishing technologies. Materials Technology and Advanced Performance Design, 1(1), 34-41.
    [2] Vana, D., Podhorsky, S., Hurajt, M., & Hanzen, V. (2013). Surface properties of the stainless steel X10 CrNi 18/10 after application of plasma polishing in electrolyte. International Journal of Modern Engineering Research, 3, 788-792.
    [3] Shadrin, S. Y., Belkin, P. N., Tambovskiy, I. V., & Kusmanov, S. A. (2020). Physical features of anodic plasma electrolytic carburizing of low-carbon steels. Plasma Chemistry and Plasma Processing, 40(2), 549-570.
    [4] Yerokhin, A., Mukaeva, V. R., Parfenov, E. V., Laugel, N., & Matthews, A. (2019). Charge transfer mechanisms underlying contact glow discharge electrolysis. Electrochimica Acta, 312.
    [5] Wu, J., Cheng, Y., Li, W., Liu, Y., & Wang, X. (2017). Investigation of anodic plasma electrolytic carbonitriding on medium carbon steel. Surface and Coatings Technology, 313, 288-293.
    [6] Amirkhanova, N. A., Belonogov, V. A., & Belonogova, G. U. (2003). Studies of the laws of electrolyte-plasma polishing of heat-resistant alloy EP-718. Metaloobrab, 6, 16-30.
    [7] Wang, J., Zong, X., Liu, J., & Feng, S. (2017). Influence of voltage on electrolysis and plasma polishing. Advanced Engineering, 100.
    [8] Loktev, D. E., Ushomirskaya, L. A., & Novikov, V. I. (2009). Study of the parameters of electrolyte-plasma polishing of low alloy steel by the method of planning a full factorial experiment. Metalloobrab, 5, 15-1887.
    [9] Alekseev, Y. G., Korolev, A. Y., Niss, V. S., Parshuto, A. E., & Budnitsky, A. S. (2018). Electrolyte-plasma polishing of titanium and niobium alloys. Science and Technology, 17(3), 211-219.
    [10] Mukaeva, V. R., & Parfenov, E. V. (2012). Mathematical modeling of electrolyte-plasma polishing. Vestnik Ufa State Aviation Technical University, 16(6), 67-73.
    [11] Chirkunova, N. V., Volenko, A. P., Mulyukov, R. R., & Shlom, M. V. (2013). Improving the technology of electrolyte-plasma polishing of austenitic stainless steel. Letters on Materials, 3, 309-311.
    [12] Kusmanov, S. A., Tambovskiy, I. V., Kusmanova, I. A., Belkin, P. N. (2019). Some features of anodic plasma electrolytic processes in aqueous solution. Journal of Physics: Conference Series, 1396, 012-025.
    [13] Danilov, I., Hackert-Oschätzchen, M., Zinecker, M., Meichsner, G., Edelmann, J., Schubert, A. (2019). Process understanding of plasma electrolytic polishing through multiphysics simulation and inline metrology. Micromachines, 10(4), 213.
    [14] Rajput, A. S., Zeidler, H., & Schubert, A. (2017). Analysis of voltage and current during the Plasma electrolytic Polishing of stainless steel. Proceedings of the 17th International Conference European Society Precision Engineering Nanotechnology, EUSPEN 2017.
    [15] Strong, F. C. (1961). Faraday's laws in one equation. Journal of Chemical Education, 38(2), 98.
    [16] Bjorn, S. (2017). How to Generate Random Surfaces in COMSOL Multiphysics®. Taken from COMSOL Blog: https://www.comsol.com/blogs/how-to-generate-random-surfaces-in-comsol-multiphysics/.
    [17] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1988). Numerical Recipes in C. Cambridge University Press.
    [18] Stuart, A., Ord, K., & Arnold, S. (1999). Kendall's Advanced Theory of Statistics: Volume 2A—Classical Inference & the Linear Model. Edward Arnold.
    [19]User:Repapetilto @ Wikipedia & User:Chen-Pan Liao @ Wikipedia - File:P value.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=36661887
    [20]Snedecor, G.W., & Cochran, W.G. (1989). Statistical Methods. 8th Edition, Iowa
    State University Press, Ames.

    無法下載圖示 校內:2028-08-01公開
    校外:2028-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE