| 研究生: |
詹家俍 Chan, Chia-Lang |
|---|---|
| 論文名稱: |
選擇性橫向奈米碳管之成長與其應用於溫度感測器之探討 Selective lateral growth of carbon nanotube and its application as temperature sensor |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 奈米碳管 、微波電漿化學氣相沉積法 、溫度感測器 |
| 外文關鍵詞: | carbon nanotube, temperature sensor, microwave plasma-enhanced chemical vapor deposit |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究旨在利用半導體技術成長橫向奈米碳管在兩相鄰由微機電技術製造的微電極之間,目的是為了量測奈米碳管電子傳輸性質。使用微波電漿化學氣相沉積系(MPCVD)在晶片上成長橫向奈米碳管。藉由場發射掃瞄式電子顯微鏡觀察不同製程參數下所成長之橫向奈米碳管表面型貌,使用I-V量測各間隔下不同連線程度下奈米碳管之基本電性並以拉曼光譜分析奈米碳管之石墨化程度。
為了了解使用奈米碳管當作奈米感測器的可行性,完成之感測晶片經切割接線後即置入可控溫烤箱內,經由資料擷取系統進行溫度感測器的校正,藉由奈米碳管束所組成之電阻感測單元分析其在不同環境溫度下電阻值改變的特性。
實驗結果顯示以微波電漿化學氣相沉積法所合成的奈米碳管其室溫電阻的分佈範圍從數KΩ至數百KΩ,從I-V量測之特性曲線得知奈米碳管基本的電性為金屬性質,並且符合毆姆定律。已經量測奈米碳管感測器之電阻溫度係數(TCR),奈米碳管在同一參數下其電阻對溫度關係曲線同時呈現兩種截然不同對熱的感測特性。
The objective of this present work is to use the semiconductor technology to grown laterally carbon nanotube between two neighboring microelectrodes that was made by MEMS techniques in order to measure the electronic transport property of the CNT. The nanotube was grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) system. The SEM is used to observe the surface morphology of the carbon nanotubes grown at different synthetic process parameters. The measurement of I-V from carbon nanotube is used to find the fundamental electronic property of different carbon nanotubes grown in different gaps between two neighboring microelectrodes. The Raman spectrum measurement is used to analyze graphitization of the CNT.
In order to check the possibility of using CNT as a nano sensor, after the fabrication and packaging processes of the CNT and the electro system, the CNTs are attempted to calibrate in an oven with the temperature control and the data acquisition system. By means of bundled CNT’s resistive elements to analyze the characteristics of the resistance variation with the surrounding temperature.
The experimental results indicate that room temperature resistance of the carbon nanotubes, that synthesized by microwave plasma-enhanced chemical vapor deposition, typically ranges from several KΩ to several hundred KΩ. The I-V measurement of CNT indicates typical properties of metal and it obeys with Ohm’s Law. The temperature coefficient of resistance (TCR) of these CNT-based nano sensor are also measured. Even when the CNTs are synthesized under the same synthetic process parameters, resistance variation with the temperature shows two different kind of thermal sensing characteristics.
[1]S.Iijima, “Helical microtubles of graphitic carbon”,Nature,354,[1991],p.56-58
[2]N.Hamada,Sl.Sawada,and A.Oshiyama,“New one-dimensional conductors:
graphitic microtules”,Physical Review Letters,68(1992),p.1579-1581
[3]J.W.Mintmire,B.I.Dunlap,and C.T.White,“Are fullerene tubules metallic”, Physical Review Letters”,68(1992),p.631-634
[4]L.M.Peng,Z.L.Zhang,Z.Q.Xue,Q.D.Wu,Z.N.Gu,andD.G.Pettifor,“Stability of carbon nanotubes:How small can they be?”, Physical Review Letters”,85(1992),p.3249-3252
[5]M.S.Dresselhaus,G.Dresselhaus,R.Saito,“Physics of carbon nanotubes
”,Carbon,33(1995),p.883-891
[6]T.W.Ebbesen,and P.M.Ajayan,“Large-scale synthesis of carbon nanotubes”, Nature,358 (1992) ,p.220-222
[7]S.Iijima,T.Ichihashi,“Single-shell carbon nanotubes of 1-nm diameter”,Nature,363(1992),p.603-605
[8]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu,
Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scuseria,D Tomnek, J. E. Fischeo,and R. E. Smalley,“Crystalline ropes of metallic carbon nanotubes ”, Science, 273 (1996) ,p.483-487
[9]S.Zhu,C.H.Su, J.C.Cochrane, S.Lehoczky, Y.Cui ,and A.Burger, “Growth oriention of carbon nanotubes by thermal chemical vapor deposition,”Journal of Crystal Growth,234(2002)p.584-588
[10]X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 390 (2001) ,p.130-133
[11]Y. C. Choi, Y. M. Shin, Y. H. Lee,and B.S.Lee,“Controlling the diameter,growth rate,and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition”, Applied Physics Letters ,76(2000) ,p.2367-2369
[12]Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field
emission from nanotube bundle emitters at low field”, Applied Physics Letters , 70 (1997) ,p.3308-3310
[13]Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai,E. W. Seeling,and R.P.H.Chang,“A nanotube-based field-emission flat panel display”, Applied Physics Letters , 72 (1998) ,p.2912-2913
[14]J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho,
and H. Dai,“Nanotube molecular wires as chemical sensors”,Science,
287(2000),p.622-625
[15]S. J. Tans, A. R. M. Verschueren, and C. Dekker,“Room-temperature
transistor based on a single carbon nanotube”, Nature, 393 (1998) ,p.
49-52
[16]R.Martel,T.Schmidt,H.R.Shea,T.Hertel,and P.AVouris,“Single and multi-wall carbon nanotube field –effect transistors”,Applied Physics Letters,73[1998],p.2447-2449
[17]H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon
nanotubes”, Carbon,39 (2001) ,p.1447-1454
[18]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,
and M. J. Heben,“Storage of hydrogen in single-walled carbon
nanotubes”, Nature,386 (1997) ,p.377-379
[19]M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao,
and J. Bernholc,“Mechanical properties, defects and electronic
behavior of carbon nanotubes”, Carbon, 38 (2000),p.1703-1711
[20]Young-Soo Han,Jin-Koog Shin,and Sung-Tae Kim,“Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”,Journal of Applied Physics,90(2001),p.5731-5734
[21]Y.Y.Wei,and Gyula Eres,“Directed assembly of carbon nanotube electronic circuits”, Applied Physics Letters,76(2000),p.3759-3761
[22]Yuegang Zhang,Aileen Chang,Jien Cao,Qian Wang,Woong Kim,and Yiming Li,“Electric-field-directed growth of aligned single-walled carbon nanotubes”,Applied Physics Letters,79(2001),p.3155-3157
[23]Ant Ural,Yiming Li,and Hongjie Dai,“Electric-field-aligned growth of single-walled carbon nanotubes on surfaces ”,Applied Physics Letters,81(2002),p.3464-3466
[24]Yoon-Taek Jang,Jin-Ho Ahn,Byeong-Kwon Ju,Yun-Hi Lee,“Lateral groeth of aligned mutilwalled carbon nanotubes under electric field ”,Solid State Communications,126(2003),p.305-308
[25]Victor T.S.Wong,and Wen J.Li,“Bulk carbon nanotube as thermal sensing and electronic circuit elements”,IEEE,7761(2003)p.844-847
[26]Victor T.S.Wong,and Wen J.Li,“Bulk carbon nanotubes as sensing element for temperature and anemometry micro sensing”, IEEE,7744(2003)p.41-44.
[27]Jaehyun Chung,Kyong-Hoon Lee,and Junghoon Lee,“Multi-walled carbon nanotube sensors”,IEEE,7731(2003)p.718-721
[28]Ralph spolenak,Philipp Kohler-Redlich,and Manfred Ruhle, Electrical transport in pure and boron-doped carbon nanotubes”,Applied Physics Letters,81(2002),p.3464-3466
[29]R.S.Lee,H.J.Kim,J.E.Fischer,A.Thess,andR.E.Smalley,“Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br”,Nature,388(1997),p.255-257
[30]D.W.Austin,A.A.Puretzky,D.BGeohegan,P.F.Britt,M.A.Guillorn,M.L.Simpson,“The electrodeposition of metal at metal/carbon nanotube junctions”,Chemical Physics Letters,361[2002],p.525-529