簡易檢索 / 詳目顯示

研究生: 江致宇
Chiang, Chih-Yu
論文名稱: 午夜溫度極大效應與大氣暉光增強連動性之觀測與分析
Observations and Analyses of the Relation between Midnight Temperature Maximum effect and Nightglow Brightness
指導教授: 談永頤
Tam, Sunny Wing-Yee
學位類別: 博士
Doctor
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 98
中文關鍵詞: 夜間溫度極大大氣暉光中性風高空大氣閃電影像儀動力學方法
外文關鍵詞: Midnight Temperature Maximum, Airglow, Neutral Wind, ISUAL, Kinetic Approach
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 夜間溫度極大 (Midnight Temperature Maximum, MTM)主要是一種發生在夜間低緯度的高層大氣效應,會在接近午夜時造成溫度明顯變化,進而影響到中低電離層的電漿活動,而溫度變化的差距相當的廣泛,依據過去觀測的結果,溫差甚至可高達200度F左右[Colerico and Mendillo, 2002; Meriwether et al., 2008]。在夜間溫度極大異常效應發生後往往都會伴隨著壓力的增加,因而從靠近赤道的壓力區因壓力梯度的關係產生向兩極區方向的子午風(meridional neutral wind);同時,從過去的地面觀測發現,午夜的630.0 nm波段暉光也會隨著溫度極大異常現象而出現明顯的增強,一般稱此向極區方向移動的暉光亮區為午夜亮區波動現象(Midnight Brightness Waves, MBW) [Colerico et al., 1996],這兩者之間無論是產生的位置和移動特徵,都有著相當高的一致性。雖然過去的觀測已證明這兩者之間的高度相關性,但卻對這兩者之間的連結論述交代不清,尤其是MTM的產生原因和暉光亮區的生成機制都還是未解之謎,所以,我們相信必定有一些物理機制尚待提出或是模擬方法需要修正,而這就是進行本研究論文的動機所在。
    以往的夜間暉光觀測都是以地面觀測為主要工具,但這會受限於氣候和環境的變化,所以本研究是利用衛星觀測來進行。衛星觀測不受天氣與區域的限制,可以進行全球的夜間暉光分布調查,所以它的長期觀測的統計結果有非常高的準確度和參考價值。在這個研究中,我們選擇台灣的福衛二號所搭載的ISUAL科學儀器來當作我們的工具,進行為期兩年的全球觀測任務。為了能對夜間暉光亮區的物理機制得到決定性的證據,我們除了對全球暉光的分布與趨勢行為做定性分析外,還做了定量分析統計,並依據不同特性條件將所有事件分為四種類型,依據每種類型的發生率所呈現的半年度週期與年度週期性的結果,來進行背景物理機制的討論。
    為了進一部探討夜間溫度極大異常現象背後可能的形成機制與它所影響的程度,我們利用SAMI-2模型,探討溫度變化對暉光強度的影響程度;此外,我們調整模型中的中性風場,模擬帶電粒子在正常風場與關閉風場影響下的差別。而在比對溫度與風場兩者之間的影響權重關係下,我們進行了詳細的驗證和說明,並成功得到兩變數的影響數值方程式,可利用於未來模型的建構上。
    關於最關鍵的問題,夜間溫度極大異常現象的產生機制,我們在這一系列的研究中也提出模擬上的基礎修正,以融入過去研究中所忽略的物理作用。為了瞭解中性粒子在kinetic approach和碰撞條件下能否造成溫度上的變化,我們在這個研究中將中性粒子的速度分布做Maxwell-Boltzmann的近似。而從我們建構的模型中,初步模擬的結果來看是相當正面的,在中性風的驅動之下,已可以成功產生中性粒子在溫度上的改變。在未來的工作中,我們將持續修正模型設定,盡力達到所有背景環境和作用過程都趨近真實的情境,最終目標是希望能建立一個全動力學的電離層模型。

    Midnight Temperature Maximum (MTM) is mainly an upper atmospheric effect that occurs at low latitudes, which causes a significant temperature anomaly near midnight. Then it induces plasma variations in the low- and middle-latitude ionosphere. The temperature difference is quite large and can be as high as 200 K according to past observations [Colerico and Mendillo, 2002; Meriwether et al., 2008]. After the MTM effect occurs, it is often accompanied by an increase in pressure near the equator, with the associated pressure gradient causing meridional neutral wind from the equator to the polar region. At the same time, from past ground observations, it was found that the 630.0 nm nightglow near midnight also increased significantly with the MTM effect. Generally, this nightglow brightness moving toward the polar regions is called Midnight Brightness Waves (MBW) [Colerico et al., 1996]. Regardless of the generated position and movement characteristics, there is a fairly high degree of consistency. Although the past observations have proven a high correlation between the two phenomena, the physical connection between them is unclear. In particular, the causes of the MTM and the mechanism of brightness are still unsolved. Therefore, we believe that there must be some physical mechanism to be proposed or the simulation method needs to be revised, and this is the motivation for carrying out this research.
    In the past, observations of nightglow were mainly made from the ground, but this kind of studies is limited by changes in climate and environment. In this study, we adopted satellite observations which are not limited by weather and geographic area, and thus we could perform surveys of the global nightglow distribution. We selected the ISUAL scientific instrument onboard Taiwan's FORMOSAT-2 as our tool for a two-year global observation study. With the goal of understanding the physical mechanism of the nightglow brightness, we performed qualitative analysis of the global nightglow distribution and trend behavior. Furthermore, we conducted quantitative statistical analysis. We divided all available events into four categories based on the different characteristics, and discussed the mechanism based on the semi-annual and annual periodic results of each types.
    In order to further explore the possible formation mechanism of MTM and its influence, we simulated the relevant ionospheric conditions based on the SAMI-2 model. By changing the temperature in the simulations, we could understand its influence on nightglow emission. Besides, the neutral wind condition is also changed in the simulations. Considering the influence of temperature and the neutral wind, we carried out detailed verification and explanations, and successfully obtained numerical formula involving the two parameters, which can be used in the construction of future models.
    Regarding the most critical issue, the mechanism for the occurrence of MTM, we have also proposed basic modifications to simulations in this series of studies, which incorporate physical effects that have been ignored in previous studies. In order to understand whether neutral particles can cause temperature changes under kinetic approach and collisional conditions, we make the Maxwell-Boltzmann approximation of the velocity distribution of particles in this study. From the model we constructed, the results of the preliminary simulations are quite positive. Driven by the neutral wind, the temperature variations of the neutral particles can be successfully produced. In the future work, we will continue to revise the model settings and try to achieve a situation where all background environments and interaction processes are close to reality. The ultimate goal is to build a fully kinetic ionospheric model.

    Chapter 1 Introduction 1 1.1 The Ionosphere and 630.0 nm Nightglow 1 1.2 Midnight Temperature Maximum (MTM) 4 1.3 MTM and Midnight Brightness 6 1.4 Purpose of the Thesis Work 8 Chapter 2 Instruments 10 2.1 FORMOSAT-2/ISUAL 10 2.2 CCD Imager 14 2.3 Orbit and Operation 18 2.4 Calibrations of Image 21 Chapter 3 The Observation Results 27 3.1 Combined Wide-range Image 27 3.2 Seasonal Variations 31 3.3 Statistics 37 3.4 Conclusion 40 Chapter 4 Simulations Based on SAMI-2 Model 42 4.1 Overview on SAMI-2 Model 42 4.2 Temperature and Neutral Wind Effects 45 4.3 Results and Analysis 49 4.4 Discussion 53 Chapter 5 Kinetic Effects on Ionospheric Physics 63 5.1 Overview 63 5.2 Neutral Wind Effect on Particle Motion 64 5.3 Kinetic Approach on Neutral Particles 68 5.4 Discussion 78 Chapter 6 Summary 82 6.1 Summary 82 6.2 Suggestion for Future Work 85 Appendix A Chemical Processes in the Ionosphere 86 A.1 Red Line Emission Rate 86 A.2 Chemical Reactions 88 References 91

    Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.-C. Hsiao, A. B. Chen, and R.-R. Hsu (2010), Midnight latitude-altitude distribution of 630-nm airglow in the Asian sector measured with FORMOSAT-2/ISUAL, J. Geophys. Res., doi:10.1029/2009JA015147.
    Adachi, T., Y. Otsuka, M. Yamaoka, M. Yamamoto, K. Shiokawa, A. B. Chen, and R.‐R. Hsu (2011), First satellite‐imaging observation of medium‐scale traveling ionospheric disturbances by FORMOSAT‐2/ISUAL, Geophys. Res. Lett., 38, L04101, doi:10.1029/2010GL046268.
    Akmaev, R. A., F. Wu, T. J. Fuller-Rowell, and H. Wang (2009), Midnight temperature maximum (MTM) in Whole Atmosphere Model (WAM) simulations, Geophys. Res. Lett., 36, L07108, https://doi.org/10.1029/ 2009GL037759.
    Bailey, G.J., and N. Balan (1996), A low-latitude ionosphere-plasmasphere model, in STEP: Handbook of Ionospheric Models, edited by R.W. Schunk, p. 173, Utah State Univ., Logan, Utah.
    Banks, P.M., and G. Kockarts (1973), Aeronoray, Academic, San Diego, Calif.
    Barghouthi, I., Barakat, A. & Persoon, A. (1998), The Effects of Altitude-Dependent Wave Particle Interactions on the Polar Wind Plasma. Astrophysics and Space Science 259, 117–140, https://doi.org/10.1023/A:1001569207346.
    Basu, S., et al. (2001), Ionospheric effects of major magnetic storms during the international space weather period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes, J. Geophys. Res., 106(A12), 30,389–30,414.
    Brackbill, J.U., D.B. Kothe and H.M. Ruppel (1988), FLIP: A Low-dissipation, particle-in-cell method for fluid flow, Computer Physics Communications, 48, 25-38.
    Brodtkorb, A.R., T.R. Hagen, M.L. Saetra (2013), Graphics processing unit (GPU) programming strategies and trends in GPU computing, J. Parallel Distrib. Comput., 73, pp. 4-13
    Burnside, R.G., J.W. Meriwether, and M. R. Torr (1977), Contamination of ground-based measurements of OI(6300 Å) and NI (5200 Å) airglow by OH emissions, Planet. Space Sci. 25, 985-988.
    Burnside, R. G., F. A. Herrero, J. W. Meriwether Jr., and J. C. G. Walker (1981), Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res., 86, 5532.
    Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043
    Chang, T. F., C. Z. Cheng, C. Y. Chiang, and A. B. Chen (2012), Behavior of substorm auroral arcs and Pi2 waves: Implication for the kinetic ballooning instability, Ann. Geophys., 30, 911–926, doi:10.5194/angeo-30-911-2012.
    Chen, A. B., Y. J. Wu, C. Y. Chiang, Y. C. Huang, C. L. Kuo, H. T. Su, R. R. Hsu, S. B. Mende, H. U. Frey, S. E. Harris, Y. Takahashi, and L. C. Lee (2012), Sensitivity degradation of ISUAL instruments and its impact on observations. Terr. Atmos. Ocean. Sci., 23, 71-83, doi: 10.3319/TAO.2011.06.20.01(AA)
    Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Sol. Terr. Phys., 65, 647-659.
    Chiang, C. Y., T. F. Chang, S. W.-Y. Tam, T. Y. Huang, A. B.-C. Chen, H. T. Su, and R. R. Hsu (2013), Global observations of the 630-nm nightglow and patterns of brightness measured by ISUAL. Terr. Atmos. Ocean. Sci., 24, 283-293, doi: 10.3319/TAO.2012.12.13.01(SEC)
    Chiang, C. Y., S. W.-Y Tam, and T. F. Chang (2018), Variations of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight, Ann. Geophys., 36, 1471–1481, https://doi.org/10.5194/angeo-36-1471-2018.
    Colerico, M., M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick, B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi (1996), Coordinated measurements of F region dynamic related to the thermospheric midnight temperature maximum, J. Geophys. Res., 101, 26,783–26,793.
    Colerico, M. J., and M. Mendillo (2002), The current state of investigations regarding the thermospheric midnight temperature maximum (MTM), J. Atmos. Sol. Terr. Phys., 64, 1361– 1369.
    Dunker, T. (2018), The airglow layer emission altitude cannot be determined unambiguously from temperature comparison with lidars, Atmos. Chem. Phys., 18, 6691–6697, https://doi.org/10.5194/acp-18-6691-2018.
    Dyson, P. L., T. P. Davies, M. L. Parkinson, A. J. Reeves, P. G. Richards, and C. E. Fairchild (1997), Thermospheric neutral winds at southern mid-latitudes: A comparison of optical and ionosonde hmF2 methods, J. Geophys. Res., 102(A12), 27189–27196, https://doi.org/10.1029/ 97JA02138.
    Frey, H., S. Mende, R. Hsu, H. Su, A. Chen, L. Lee, H. Fukunishi, and Y. Takahashi (2004), The spectral signature of transient luminous events (TLE, sprite, elve, halo) as observed by ISUAL, AGU Fall Meeting Abstracts, 51, 05.
    Frey, H. U., et al. (2016), The Imager for Sprites and Upper Atmospheric Lightning (ISUAL), J. Geophys. Res. Space Physics, 121, 8134–8145, https://doi.org/10.1002/2016JA022616.
    Froese-Fischer, C., and H. P. Saha (1983), Multiconfiguration Hartree-Fock results with Breit-Pauli corrections for forbidden transitions in the 2p4 configuration, Phys. Rev. A, 28, 3169– 3178, https://doi.org/10.1103/PhysRevA.28.3169.
    Harper, R. M. (1973), Nighttime meridional neutral winds near 350 km at low to mid-latitudes, J. Atmos. Terr. Phys., 35, 2023– 2034.
    Harris, S. (2000), ISUAL Imager Science Performance Test Report, Space Sciences Laboratory, UCB, Berkeley, CA, Doc. 8988-W7 rev B.
    Harris, S. (2003), ISUAL Spectrophotometer Science Performance Test Report, Space Sciences Laboratory, UCB, Berkeley, CA, Doc. 8998-W7 rev B.
    Hedin, A.E., E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J. Fraser, T. Tsuda, F. Vial, and R.A. Vincent (1996), Empirical wind model for the upper, middle, and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421-1447, https://doi.org/10.1016/0021-9169(95)00122-0.
    Herrero, F. A., and J. W. Meriwether Jr. (1980), 6300 airglow meridional intensity gradients, J. Geophys. Res., 85, 4191.
    Herrero, F. A., and N. W. Spencer (1982), On the horizontal distribution of the equatorial thermospheric midnight temperature maximum and its seasonal variation, Geophys. Res. Lett., 9, 1179.
    Herrero, F. A., N. W. Spencer, and H. G. Mayr (1993), Thermosphere and F-region plasma dynamics in the equatorial region, Adv. Space Res., 13(1), 201–220, https://doi.org/10.1016/0273-1177(93)90019-8.
    Huba, J. D., G. Joyce, and J. A. Fedder (2000), Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035–23,053, https://doi.org/10.1029/2000JA000035.
    Kelley, M. C., J. J. Makela, B. M. Ledvina, and P. M. Kintner (2002), Observations of equatorial spread F from Haleakala, Hawaii, Geophys. Res. Lett., 29(20), 2003, doi:10.1029/2002GL015509.
    Kuo, C.-L., R. R. Hsu, A. B. Chen, H. T. Su, L. C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, and Y. Takahashi (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, 19103, DOI: 10.1029/2005GL023389.
    Kuo, C. (2007), Analysis of Sprites and Elves Recorded by the ISUAL Scientific Payload of FORMOSAT-2 Satellite, Ph.D. thesis, National Cheng Kung University, Taiwan.
    Langford, A. O., V. M. Bierbaum, and S. R. Leone (1986), Branching ratios for electronically excited oxygen atoms formed in the reaction of N+ with O2 at 300 K, J. Chem. Phys., 84, 2158– 2166, https://doi.org/10.1063/1.450377.
    Link, R., and L. L. Cogger (1988), A reexamination of the OI 6300 Å nightglow, J. Geophys. Res., 93(A9), 9883-9892.
    Maruyama, T., S. Saito, M. Kawamura, and K. Nozaki (2008), Thermospheric meridional winds as deduced from ionosonde chain at low and equatorial latitudes and their connection with midnight temperature maximum, J. Geophys. Res., 113, A09316, doi:10.1029/2008JA013031.
    McHarg, M. G., H. C. Stenbaek-Nielsen, and T. Kammae (2007), Observations of streamer formation in sprites, Geophys. Res. Lett., 34, 06804, DOI: 10.1029/2006GL027854.
    Mende, S. B., G. R. Swenson, and S. P. Geller (1993), Limb view spectrum of the Earth’s airglow, J. Geophys. Res., 98(A11), 19,117-19,125.
    Meriwether, J., M. Faivre, C. Fesen, P. Sherwood, and O. Veliz (2008), New results on equatorial thermospheric winds and the midnight temperature maximum, Ann. Geophys., 26, 447–466.
    Mukherjee, G. K., N. Parihar, K. Niranjan, and G. Manju (2006), Signature of midnight temperature maximum (MTM) using OI 630 nm airglow, Indian J. Radio Space Phys., 35,14–21.
    Nelson, G. J., and L. L. Cogger (1971), Dynamical behavior of the nighttime ionosphere at Arecibo, J. Atmos. Terr. Phys., 33, 1711 – 1726, https://doi.org/10.1016/0021-9169(71)90219-4.
    Niranjan, K., P. S. Brahmanandam, and B. Srivani (2006), Signatures of equatorial midnight temperature maximum as observed from in situ and ground-based ionospheric measurements in the Indian sector, J. Geophys. Res., 111, A07309, doi:10.1029/2005JA011386.
    Ogawa, T., N. Balan, Y. Otsuka et al. (2002), Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan. Earth Planet Sp 54, 45–56. https://doi.org/10.1186/BF03352420
    Otsuka, Y., T. Kadota, K. Shiokawa, T. Ogawa, S. Kawamura, S. Fukao, and S.-R. Zhang (2003), Optical and radio measurements of a 630-nm airglow enhancement over Japan on 9 September 1999, J. Geophys. Res., 108(A6), 1252, doi:10.1029/2002JA009594.
    Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson (2004), Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers, Geophys. Res. Lett., 31, 15, doi:10.1029/2004GL020262.
    Pasko, V. P., and J. J. George (2002), Three-dimensional modeling of blue jets and blue starters, J. Geophys. Res., 107l, DOI: 10.1029/2002JA009473.
    Pasko, V. P. (2003), Electrical jets, Nature, 423, 927-929.
    Peterson, V. L., T. E. Van Zandt, and R. B. Norton (1966), F-region nightglow emissions of atomic oxygen, 1. Theory, J. Geophys. Res., 71, 2255-2265.
    Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, https://doi.org/10.1029/2002JA009430, 2002.
    Pimenta, A. A., Y. Sahai, J. A. Bittencourt, and F. J. Rich (2007), Ionospheric plasma blobs observed by OI 630 nm all-sky imaging in the Brazilian tropical sector during the major geomagnetic storm of April 6–7, 2000, Geophys. Res. Lett., 34, L02820, doi:10.1029/2006GL028529.
    Rajesh, P. K., J. Y. Liu, H. S. S. Sinha, S. B. Bernejee, R. N. Misra, N. Dutt, and M. B. Dadhania (2007), Observations of plasma depletions in 557.7-nm images over Kavalur, J. Geophys. Res., 112, A07307, doi:10.1029/2006JA012055.
    Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C. H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee (2009), First results of the limb imag¬ing of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightnings. J. Geo¬phys. Res., 114, A10302, doi: 10.1029/2009JA014087.
    Rajesh, P. K., C. H. Chen, C. H. Lin, J. Y. Liu, J. D. Huba, A. B. Chen, R. R. Hsu, and Y. T. Chen (2014), Low-latitude midnight brightness in 630.0 nm limb observations by FORMOSAT-2/ISUAL, J. Geophys. Res. Space Physics, 4894–4904, 119, https://doi.org/10.1002/2014JA019927.
    Rishbeth, H., and C. S. G. K. Setty (1961), The F layer at sunrise, J. Atmos. Terr. Phys., 20, 263-267.
    Rishbeth, H., and O. K. Garriot (1969), Introduction to Ionospheric Physics, Elsevier, New York.
    Rishbeth, H. (1972), Thermospheric winds and the F-region – A review, J. Atmos. Terr. Phys., 34, 1.
    Roble, R. G. and E. C. Ridley (1994). A thermosphere-ionosphere-mesosphere- electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophysical Research Letters, 21, 417-420. doi:10.1029/93GL03391
    Saito, A., M. Nishimura, M. Yamamoto, S. Fukao, M. Kubota, K. Shiokawa, Y. Otsuka, T. Tsugawa, T. Ogawa, M. Ishii, T. Sakanoi, and S. Miyazaki (2001), Traveling ionospheric disturbances detected in the FRONT campaign, Geophys. Res. Lett., 44, 13, 689-692.
    Sastri, J. H., H. N. R. Rao, V. V. Somayajulu, and H. Chandra: Thermospheric winds associated with equatorial midnight temperature maximum (MTM), Geophys. Res. Lett, 21, 825, https://doi.org/10.1029/93GL03009, 1994.
    Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205-1208.
    Shepherd, M. G. (2016), WINDII observations of thermospheric O(1D) nightglow emission rates, temperature, and wind: 1. The northern hemisphere midnight temperature maximum and the wave 4, J. Geophys. Res. Space Physics, 121, https://doi.org/10.1002/2016JA022703.
    Shiokawa, K., Y. Otsuka, and T. Ogawa (2006), Quasiperiodic southward moving waves in 630-nm airglow images in the equatorial thermosphere, J. Geophys. Res., 111, A06301, doi:10.1029/2005JA011406.
    Singh, N., and J. L. Horwitz (1992), Plasmasphere refilling: Recent observations and modeling, J. Geophys. Res., 97(A2), 1049–1079, doi:10.1029/91JA02602.
    Sobral, J. H. A., H. Takahashi, M. A. Abdu, P. Muralikrishna, Y. Sahai, C. J. Zamlutti, E. R. de Paula, and P. P. Batista (1993), Determination of the quenching rate of the O(1D) by O(3D) from rocket-borne optical (630 nm) and electron density data, J. Geophys. Res., 98, 7791-7798, https://doi.org/10.1029/92JA01839.
    Spencer, N. W., C. R. Carignan, H. G. Mayr, H. B. Niemann, R. F. Theis, and L. E. Wharton (1979), The midnight temperature maximum in the Earth’s equatorial thermosphere, Geophys. Res. Lett., 6, 444.
    St. Maurice, J. P., D. G. Torr (1978), Nonthermal rate coefficients in the ionosphere: The reactions of O2+ with N2, O2, and NO, J. Geophys. Res., 83, 969, https://doi.org/10.1029/JA083iA03p00969.
    Streit, G. E., C. J. Howard, A. L. Schmeltekopf, J. J. A. Davidson, and H. I. Schiff (1976), Temperature dependence of O(1D) rate constants for reactions with O2, N2, CO2, O3 and H2O, J. Chem. Phys., 65, 4761– 4764, https://doi.org/10.1063/1.432930.
    Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974-976.
    Sun, Y., and A. Dalgarno (1992), Collisional excitation of metastable O(1D) atoms, J. Chem. Phys., 96, 5017– 5019, https://doi.org/10.1063/1.462744
    Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble (2002), Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: A comparison with TIE-GCM simulations, J. Atmos. Sol. Terr. Phys., 64, 405– 415, https://doi.org/10.1016/S1364-6826(01)00109-2.
    Titheridge, J. E., and M. J. Buonsanto (1983), Annual variations in the electron content and height of the F layer in the northern and southern hemispheres, related to neutral composition, J. Atmos. Terr. Phys., 45, 683-696.
    Torr, M. R., and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the ionosphere, J. Atmos. Terr. Phys., 35, 2237.
    Torr, M. R. and D. G. Torr (1982), The role of metastable species in the thermosphere, Rev. Geophys. and Space Phys., 20, 91–144, https://doi.org/10.1029/RG020i001p00091
    Vlasov, M. N., M. J. Nicolls, M. C. Kelley, S. M. Smith, N. Aponte, and S. A. Gonzalez (2005), Modeling of airglow and ionospheric parameters at Arecibo during quiet and disturbed periods in October, 2002, J. Geophys. Res., 110, A07303, https://doi.org/10.1029/2005JA011074.
    Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, and O. H. Vaughan (1998), Blue Jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production, J. Atmos. Sol. Terr. Phys., 60, 713-724.
    Wescott, E. M., D. D. Sentman, H. C. Stenbaek-Nielsen, P. Huet, M. J. Heavner, and D. R. Moudry (2001), New evidence for the brightness and ionization of blue starters and blue jets, J. Geophys. Res., 106, 21549-21554, DOI: 10.1029/2000JA000429.
    Yonezawa, T. (1959), On the seasonal and non-seasonal annual variations and the semi-annual variation in the noon and midnight densities of the F2-layer in middle latitudes, II, J. Radio Res. Lab. Jpn., 6, 651-660.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE