簡易檢索 / 詳目顯示

研究生: 王莉云
Wang, Li-Yun
論文名稱: 吡咯并吡咯二酮衍伸物於仿神經突觸薄膜電晶體之應用研究
Study on Diketopyrrolopyrrole Derivative-Based Artificial Synaptic Thin-Film Transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 123
中文關鍵詞: 有機薄膜電晶體高分子半導體電解質閘電晶體仿神經突觸元件
外文關鍵詞: Organic thin film transistors, Polymer semiconductors, Electrolyte-gated transistors, Artificial synaptic transistors
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 II Extended Abstract IV 誌謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1-1 有機場效電晶體簡介 1 1-2 仿生突觸元件簡介 1 1-2-1 電突觸(Electronic synapses) 2 1-2-1 光突觸(Photonic synapses) 2 1-3 研究動機 2 第二章 有機薄膜電晶體與神經突觸 4 2-1 有機薄膜電晶體 4 2-1-1 有機薄膜電晶體之基本結構 4 2-1-2 有機薄膜電晶體操作原理 4 2-2 有機薄膜電晶體載子傳輸機制 5 2-3 有機薄膜電晶體之電性參數 5 2-3-1 載子遷移率(Mobility, μ) 6 2-3-2 臨界電壓(Threshold voltage, VT) 6 2-3-3 電晶體操作模式 6 2-3-4 電流開關比 (On/Off Ratio) 7 2-3-5 次臨界擺幅 (Subthreshold swing, S.S.) 7 2-4 神經突觸 8 2-4-1 突觸之基本架構與功能 8 2-4-2 化學突觸 9 2-4-3 神經脈衝傳導過程 9 2-4-4 突觸後電流與能量消耗 10 2-4-5 成對脈衝刺激 10 2-4-6 增強作用與抑制作用 11 第三章 實驗方法與儀器介紹 17 3-1 實驗材料 17 3-1-1 基板 17 3-1-2 有機高分子材料 17 3-1-3 添加劑 17 3-1-4 高分子修飾層 18 3-1-5 有機溶劑 18 3-1-6 離子液體 18 3-1-7 導電高分子材料 19 3-2 實驗分析儀器介紹 19 3-2-1 超音波清洗機 19 3-2-2 旋轉塗佈機 19 3-2-3 電漿束清洗機 19 3-2-4 物理氣相沉積儀(Physical Vapor Deposition, PVD) 20 3-2-5 紫外光-可見光光譜儀(Ultraviolet–Visible Spectroscopy) 20 3-2-6 拉曼光譜儀(Raman Spectroscopy) 20 3-2-7 光激發螢光光譜儀(Photoluminescence, PL) 21 3-2-8 高強度多功能X光薄膜微區繞射儀(Multipurpose High intensity X-Ray Thin-Film Micro Area Diffractometer, XRD) 21 3-2-9 原子力顯微鏡(Atomic Force Microscopy, AFM) 22 3-2-10 半導體量測分析儀(Keithley 4200A-SCS) 22 3-3 元件製程 23 3-3-1 基板切割與清潔 23 3-3-2 有機高分子溶液製備 23 3-3-3 物理氣相沉積電極 24 3-3-4 旋轉塗佈有機半導體層 24 3-3-5 離子凝膠製備與貼附 25 3-3-6 上閘極置備與貼附 25 第四章 實驗基礎結果與討論 32 4-1 前言 32 4-2 不同溶劑之薄膜分析 32 4-2-1 紫外光-可見光光譜分析 32 4-2-2 拉曼光譜分析 32 4-2-3 光激發螢光光譜分析 33 4-2-4 高強度多功能X光薄膜微區繞射儀分析 33 4-2-5 原子力顯微鏡分析 34 4-3 電晶體電特性與仿生突觸電特性分析 34 4-3-1 電特性分析 35 4-3-2 不同刺激時間下單刺激電特性分析 36 4-3-3 不同刺激時間間隔下成對脈衝刺激電特性分析 37 4-3-4 不同刺激時間下多刺激電特性分析 38 4-3-5 仿生突觸元件物理機制 40 4-3-6照光前後對比分析 40 4-4 小節 41 第五章 實驗結果與討論 64 5-1 前言 64 5-2 不同添加劑之薄膜分析 64 5-2-1 紫外光-可見光光譜分析 64 5-2-2 拉曼光譜分析 64 5-2-3 光激發螢光光譜分析 65 5-2-4 高強度多功能X光薄膜微區繞射儀分析 65 5-2-5 原子力顯微鏡分析 66 5-3 電晶體電特性與仿生突觸分析 66 5-3-1 電特性分析 66 5-3-2 不同刺激時間下單刺激電特性分析 67 5-3-3 成對脈衝刺激電特性分析 68 5-3-4 多刺激電特性與連續光刺激分析 69 5-3-5 高電阻態與低電阻態 70 5-4 小節 71 第六章 結果與未來展望 91 6-1 結果 91 6-2 未來展望 92 參考資料 93

    [1]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis Of Electrically Conducting Organic Polymers: Halogen Derivatives Of Polyacetylene,(CH)x, Journal of the Chemical Society, Chemical Communications. 16, 578-580, 1977.
    [2] A. Tsumura, H. Koezuka, T. Ando, Macromolecular Electronic Device: Field‐effect Transistor With A Polythiophene Thin Film, Applied Physics Letters. 49, 1210-1212, 1986.
    [3] A. B. Tamayo, M. Tantiwiwat, B. Walker, T. Nguyen, Design, Synthesis, And Self-Assembly Of Oligothiophene Derivatives With A Diketopyrrolopyrrole Core, The Journal of Physical Chemistry C. 112, 15543-15552, 2008.
    [4] F. Antonio, Polymer Donor–Polymer Acceptor (All-Polymer)Solar Cells, Materials Today. 16, 123-132, 2013.
    [5] Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis Of Conjugated Polymers For Organic Solar Cell Applications, Chemical reviews. 109, 5868-5923, 2009.
    [6] A. Nobuhiko, Y. Tsubata, T. Yamada, Development Of Polymer Organic Light-Emitting Diodes, SUMITOMO KAGAKU. 2018, 2019.
    [7] Y. J. Choi, J. Kim, M. J. Kim, H. S. Ryu, H. Y. Woo, J. H. Cho, J. Kang, Hysteresis Behavior Of The Donor–Acceptor-Type Ambipolar Semiconductor For Non-Volatile Memory Applications, Micromachines. 12, 301, 2021.
    [8] S. Ruth, J. Shinar, Light Extraction From Organic Light Emitting Diodes (OLEDs), Journal of Physics: Photonics. 4, 032002, 2022.
    [9] Z. Wu, Y. Zhai, H. Kim, Jason D. Azoulay, T. N. Ng, Emerging Design And Characterization Guidelines For Polymer-Based Infrared Photodetectors, Accounts of Chemical Research. 51 , 3144-3153, 2018.
    [10] W. Y. Chou, Y. S. Lin, L. L. Kuo, S. J. Liu, H. L. Cheng, F. C. Tang, Light Sensing In Photosensitive, Flexible N-Type Organic Thin-Film Transistors, Journal of Materials Chemistry C. 2, 626-632, 2014.
    [11] Q. Wan, M. T. Sharbati, J. R. Erickson, Y. Du, F. Xiong, Emerging Artificial Synaptic Devices For Neuromorphic Computing, Advanced Materials Technologies. 4, 1900037, 2019.
    [12] H. R. Lee, Y. Won, J. H. Oh, Neuromorphic Bioelectronics Based On Semiconducting Polymers, Journal of Polymer Science. 60, 348-376, 2022.
    [13] S. I. Cho, J. B. Jeon, J. H. Kim, S. H. Lee, W. Jeong, J. Kim, G. Kim , K. M. Kim, S. H. K. Park, Synaptic Transistors With Human Brain-Like FJ Energy Consumption Via Double Oxide Semiconductor Engineering For Neuromorphic Electronics, Journal of Materials Chemistry C. 9, 10243-10253, 2021.
    [14] O. Kwon, S. Oh, H. Park, S.H. Jeong, W. Park, B. Cho, In-Depth Analysis On Electrical Parameters Of Floating Gate IGZO Synaptic Transistor Affecting Pattern Recognition Accuracy, Nanotechnology. 33, 215201, 2022.
    [15] M. Ismail, S. Kim, M. Rasheed, C. Mahata, M. Kang, S. Kim, Engineering Of TiN/ZnO/SnO2/ZnO/Pt Multilayer Memristor With Advanced Electronic Synapses And Analog Switching For Neuromorphic Computing, Journal of Alloys and Compounds. 1003, 175411, 2024.
    [16] A. A. Razavieh, J. R. Nasr, D. S. Schulman, O. M. Eichfeld, S. Das, Mimicking Neurotransmitter Release In Chemical Synapses Via Hysteresis Engineering In MoS2 Transistors, ACS nano. 11, 3110-3118, 2017.
    [17] C. Qian, J. Sun, L. A. Kong, G. Gou, J. Yang, J. He, Y. Gao, Q. Wan, Artificial Synapses Based On In-Plane Gate Organic Electrochemical Transistors, ACS applied materials & interfaces. 8, 26169-26175, 2016.
    [18] S. Desbief, A. Kyndiah, D. Guérin, D. Gentili, M. Murgia, S. Lenfant, F. Alibart, T. Cramer, F. Biscarini, D. Vuillaume, Low Voltage And Time Constant Organic Synapse-Transistor, Organic Electronics. 21, 47-53, 2015.
    [19] Y. Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. A. Talin , A. Salleo, A Non-Volatile Organic Electrochemical Device As A Low-Voltage Artificial Synapse For Neuromorphic Computing, Nature materials.16, 414-418, 2017.
    [20] H. L. Park, H. Kim, D. Lim, H. Zhou, Y. H. Kim, Y. Lee, S. Park, T. W. Lee, Retina‐Inspired Carbon Nitride‐Based Photonic Synapses For Selective Detection Of UV Light, Advanced Materials. 32, 1906899, 2020.
    [21] D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/Organic Semiconductor-Based Photonic Synaptic Transistor For Artificial Visual System, ACS applied materials & interfaces. 12, 39487-39495, 2020.
    [22] Y. Zhang, Q. Zeng, Y. Shen, L. Yang, F. Yu, Electrochemical Stability Investigations And Drug Toxicity Tests Of Electrolyte-Gated Organic Field-Effect Transistors, ACS Applied Materials & Interfaces. 12, 56216-56221, 2020.
    [23] A. B. Buer, V. Nketia-Yawson, H. Lee, H. Ahn, B., Nketia-Yawson, S. Kwon, J. W. Jo, Solid-State Ionic Liquid Additive Enhances Mobility In Conjugated Polymer Field-Effect Transistors. ACS Applied Polymer Materials. 6, 9635-9643, 2024.
    [24] Y. Lei, N. Li, W.K. E. Chan, B. S. Ong, F. Zhu, Highly Sensitive Near Infrared Organic Phototransistors Based On Conjugated Polymer Nanowire Networks, Organic Electronics. 48, 12-18, 2017.
    [25] J. Zaumseil. P3HT And Other Polythiophene Field-Effect Transistors, P3HT Revisited–From Molecular Scale to Solar Cell Devices. 107-137, 2014.
    [26] S. Jakher, R. Yadav, Organic Thin Film Transistor Review Based On Their Structures, Materials, Performance Parameters, Operating Principle, And Applications, Microelectronic Engineering. 112193,2024.
    [27] D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, D.G. Schlom, Pentacene Organic Thin-Film Transistors-Molecular Ordering And Mobility, IEEE Electron Device Letters. 18, 87-89, 1997.
    [28] G. Horowitz, Organic Field‐Effect Transistors, Advanced materials. 10, 365-377, 1998.
    [29] C. D. Dimitrakopoulos, P. RL. Malenfant, Organic Thin Film Transistors For Large Area Electronics, Advanced materials. 14, 99-117, 2002.
    [30] S. W. Cho, S. M. Kwon, Y. H. Kim, S. K. Park, Recent Progress In Transistor‐Based Optoelectronic Synapses: From Neuromorphic Computing To Artificial Sensory System, Advanced Intelligent Systems. 3, 2000162, 2021.
    [31] X. Wang, H. Yang, E. Li, C. Cao, W. Zheng, H. Chen, W. Li, Stretchable Transistor‐Structured Artificial Synapses For Neuromorphic Electronics, Small. 19, 2205395, 2023.
    [32] S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, Y. Shao, J. Huang, Recent Advances In Transistor‐Based Artificial Synapses, Advanced Functional Materials. 29, 1903700, 2019.
    [33] B. Chen, S. Sun, S. Fan, X. Liu, Q. Li, J. Su, Low‐Cost Fabricated MgSnO Electrolyte‐Gated Synaptic Transistor With Dual Modulation of Excitation And Inhibition, Advanced Electronic Materials. 8, 2200864, 2022.
    [34] P. Ghamari, M. R. Niazi, D. F. Perepichka, Controlling Structural And Energetic Disorder In High-Mobility Polymer Semiconductors Via Doping With Nitroaromatics, Chemistry of Materials. 33, 2937-2947, 2021.
    [35] S. H. Kim, S. Park, S. Chung, E. Ok, B. J. Kim, J. D. Jang, B. Kang, K. Cho, Multiscale Analyses Of Strain-Enhanced Charge Transport In Conjugated Polymers, ACS nano. 18, 31332-31348, 2024.
    [36] K. J. Park ,C. W. Kim, M. J. Sung, J. Lee, Y. T. Chun, Semiconducting Polymer Nanowires With Highly Aligned Molecules For Polymer Field Effect Transistors, Electronic

    無法下載圖示 校內:2030-03-07公開
    校外:2030-03-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE