簡易檢索 / 詳目顯示

研究生: 林沐泰
Lin, Mu-Tai
論文名稱: 環境估測與調節之多移動機器人系統
Mobile Robot Networks in Environmental Estimation and Regulation
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 165
中文關鍵詞: 多機器人系統無線感測器與致動器網路覆蓋控制梯度下降法
外文關鍵詞: multi-robot control system, wireless sensor and actuator network, coverage control, gradient descent method
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 源於傳統覆蓋控制方法之缺陷以及環境估測、移動機器人與致動器網路間整合相關研究的缺乏,本論文基於最大似然估計利用高斯混和模型建構出環境中的重要性分佈,配合最佳化方法中的梯度下降法,提出一無線感測網路與致動器之移動機器人網路架構與其覆蓋控制方法。此架構中使用無線感測器於蒐集環境中資訊,並利用致動器對環境做出影響來調節環境,其中致動器配置於移動機器人上,作為機器人位置對環境所造成之影響;感測器則配置於環境中之特定位置與移動機器人上,其中預先放置於環境中之靜態感測器用於獲得充足資訊以建構出環境的模型,機器人上之感測器則提供機器人位置之資訊,以達到更精確的模型建構。在此研究中,將環境之重要性分佈稱為感測密度函數,本研究之目的乃藉此架構中感測器回授之資訊建構出估測密度函數,並依感測密度函數與估測密度函數之相似性,以期望最大演算法完成最大似然估計,藉由移動高斯混和函數的基底函數中心來最大化相似性。於獲得環境之模型後,利用覆蓋控制方法定義出能使多機器人達到最佳分佈的最佳化問題,以梯度下降法設計控制器,找出移動機器人能對環境做出最有效率影響之移動軌跡,同時考慮進環境中之障礙物,使此架構能應用於更多樣化之環境中,並以Lyapunov穩定性定理設計環境調節控制器,使移動機器人上之致動器能將環境調節至目標分佈。最後,以實際定位系統與機器人所建立之實驗架構,驗證覆蓋控制與環境調節之效能。

    This thesis proposes a gradient descent coverage controller and Lyapunovbased actuator output in structure combining multi-robot control system with wireless sensor and actuator network (WSAN). There are pre-deployed wireless sensors in the environment to gather sensory information to estimate the distribution of environmental variable. The environment distribution is illustrated by a density function which is constructed by Gaussian mixture model based on Expectation Maximization (EM) algorithm to estimate real condition. On the other hand, regulating actuators embedded on mobile robots a_ect the environment. The objective of this thesis is to utilize the constructed estimated density to drive the multi-robots to the region with higher error and regulate the environment to the target distribution.
    Based on using gradient in each gradient descent iteration, gradient descent method can be introduced to the optimization problem of coverage task. For the feature of coverage control, gradient descent coverage controller can be utilized to _nd an optimal solutions of multi-robots and achieve the similar e_ect as traditional methods. By considering obstacles information and robots formation, gradient
    descent coverage method can be applied in more complex condition. Moreover, after driving the robots to more important region, the embedded regulating actuators designed from Lyapunov stability a_ect the environmental regulating error converge to zero and completed the regulating task.
    The proposed coverage control method and regulating actuator output have more adaptability to complicated environment and high regulating e_ciency. Moreover, this thesis provides theoretical analysis, numerical simulation and experimentto validate the feasibility and stability of the proposed system.

    圖目錄 - xvi 表目錄 - xx 第一章緒論 - 1 1.1 研究背景 - 1 1.2 文獻回顧 - 3 1.3 研究動機與目的 - 6 1.4 研究目標與貢獻 - 8 1.5 論文架構 - 9 第二章基礎理論 - 11 2.1 環境密度學習 - 11 2.2 凸函數最佳化 - 13 2.2.1 凸函數 - 13 2.2.2 延森不等式(Jenson's inequality) - 14 2.2.3 梯度下降法 - 15 2.3 非線性系統穩定性理論 - 17 2.3.1 非線性系統 - 17 2.3.2 系統穩定性 - 17 2.3.3 Lyapunov穩定性分析 - 18 第三章環境密度函數覆蓋 - 20 3.1 群組機器人覆蓋問題 - 20 3.2 Lloyd控制器設計 - 21 3.3 梯度下降法控制器設計 - 23 3.3.1 梯度下降法控制器 - 24 3.3.2 全域梯度下降法與隊形控制策略 - 29 3.3.3 障礙物閃避控制器 - 31 3.4 模擬結果與討論 - 32 3.4.1 無障礙物環境之覆蓋 - 32 3.4.2 環境具簡單障礙物且多個峰值之覆蓋 - 45 3.4.3 環境具複雜障礙物且多個峰值之覆蓋 - 53 第四章環境調節致動器之設計 - 66 4.1 環境調節問題 - 66 4.2 Lyapunov控制器設計 - 68 4.3 模擬結果與討論 - 70 4.3.1 均勻分佈至目標分佈之調節 - 70 4.3.2 複雜障礙物、不同覆蓋控制器之調節 - 76 4.3.3 複雜障礙物、不同數量致動器之調節 - 90 第五章實驗平台架設 - 105 5.1 群組機器人:Turtlebot3 Burger - 105 5.2 室內定位系統 - 106 5.3 實驗通訊架構 - 109 第六章實驗結果與討論 - 112 6.1 環境密度函數覆蓋 - 112 6.2 具簡單障礙物之環境密度函數覆蓋 - 122 6.3 均勻分佈至目標分佈之環境調節 - 125 6.4 環境致動器之複雜環境調節 - 130 6.5 討論 - 138 第七章結論與未來展望 - 139 7.1 結論 - 139 7.1.1 環境密度函數覆蓋 - 139 7.1.2 環境調節致動器 - 140 7.2 未來展望 - 140 參考文獻 - 141 Appendix - Experimet Codes - 146 A.1 Localization and Orientation Detection - 146 A.1 Localization and Orientation Detection - 158

    [1] Tamio Arai, Enrico Pagello, and Lynne E. Parker. Editorial: Advances in multi-robot systems. IEEE Transactions on Robotics and Automation, 18(5):655-661, 2002.
    [2] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey. Computer networks, 52(12):2292-2330, 2008.
    [3] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actor networks: research challenges. Ad Hoc Networks, 2(4):351-367, 2004.
    [4] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129-137, 1982.
    [5] Jiming Chen, Xianghui Cao, Peng Cheng, Yang Xiao, and Youxian Sun. Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Transactions on Industrial Electronics, 57(12):4219-4230, 2010.
    [6] Tsen-Chang Lin and Yen-Chen Liu. Multi-robot control system in wireless sensor and actuator network. In 2016 International Conference on Advanced Robotics and Intelligent Systems, pages 1-6, 2016.
    [7] 林岑璋. 基於最大似然估計之直接學習覆蓋控制. Master's thesis, 國立成功大學, 2017.
    [8] Jorge Cort_es, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243-255, 2004.
    [9] Mehmet Dogar, Ross A. Knepper, Andrew Spielberg, Changhyun Choi, Henrik I. Christensen, and Daniela Rus. Multi-scale assembly with robot teams. The International Journal of Robotics Research, 34(13):1645-1659, 2015.
    [10] Nikhil Chopra, Dusan M. Stipanovic, and Mark W. Spong. On synchronization and collision avoidance for mechanical systems. In 2008 American Control Conference, pages 3713-3718. IEEE, 2008.
    [11] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.
    [12] Tucker Balch and Ronald C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926-939, 1998.
    [13] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on automatic control, 51(3):401-420, 2006.
    [14] Yen-Chen Liu and Nikhil Chopra. Synchronization of networked robotic systems on strongly connected graphs. In 2010 49th IEEE Conference on Deci-sion and Control, pages 3194-3199. IEEE, 2010.
    [15] Takeshi Hatanaka, Yuji Igarashi, Masayuki Fujita, and Mark W Spong. Passivity-based pose synchronization in three dimensions. IEEE Transac- tions on Automatic Control, 57(2):360-375, 2012.
    [16] Silvia Mastellone, Du_san M. Stipanovi_c, Christopher R. Graunke, Koji A. Intlekofer, and Mark W. Spong. Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. The Inter- national Journal of Robotics Research, 27(1):107-126, 2008.
    [17] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E. Schneider. Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3):376-386, 2005.
    [18] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3:2383-2388, 2002.
    [19] Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next century challenges: mobile networking for smart dust". In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pages 271-278. ACM, 1999.
    [20] Geo_rey Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Marcillo, Je_Johnson, Jonathan Lees, and Matt Welsh. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2):18-25, 2006.
    [21] Xu Li, Inria Lille, Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic. Servicing wireless sensor networks by mobile robots. IEEE Communications Magazine, 50(7):147-154, 2012.
    [22] Jorge Cort_es, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. In IEEE International Conference on Robotics and Automation, pages 1327-1332. IEEE, 2002.
    [23] Sung G. Lee, Yancy Diaz-Mercado, and Magnus Egerstedt. Multirobot control using time-varying density functions. IEEE Transactions on Robotics, 31(2):489-493, 2015.
    [24] 李維韜. 基於覆蓋控制之雙向人機遠端遙控系統. Master's thesis, 國立成功大學, 2016.
    [25] Luciano C. A. Pimenta, Vijay Kumar, Renato C. Mesquita, and Guilherme A. S. Pereira. Sensing and coverage for a network of heterogeneous robots. In 47th IEEE Conference on Decision and Control, pages 3947-3952. IEEE, 2008.
    [26] Andreas Breitenmoser, Mac Schwager, Jean-Claude Metzger, Roland Siegwart, and Daniela Rus. Voronoi coverage of non-convex environments with a group of networked robots. In 2010 IEEE International Conference on Robotics and Automation, pages 4982-4989. IEEE, 2010.
    [27] Michalis Thanou Stergiopoulos, Yiannis and Anthony Tzes. Distributed collaborative coverage-control schemes for non-convex domains. IEEE Transac- tions on Automatic Control, 60(9):2422-2427, 2015.
    [28] Jorge Cort_es. Coverage optimization and spatial load balancing by robotic sensor networks. IEEE Transactions on Automatic Control, 55(3):749-754, 2010.
    [29] Wei Li and Christos G. Cassandras. Distributed cooperative coverage control of sensor networks. In 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pages 2542-2547. IEEE, 2005.
    [30] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Unifying geometric, probabilistic, and potential _eld approaches to multi-robot deployment. The International Journal of Robotics Research, 30(3):371-383, 2011.
    [31] Minyi Zhong and Christos G. Cassandras. Distributed coverage control and data collection with mobile sensor networks. IEEE Transactions on Automatic Control, 56(10):2445-2455, 2011.
    [32] Islam I. Hussein and Dusan M. Stipanovic. E_ective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15(4):642-657, 2007.
    [33] Cheng Song, Gang Feng, Yuan Fan, and Yong Wang. Decentralized adaptive awareness coverage control for multi-agent networks. Automatica, 47(12):2749-2756, 2011.
    [34] Yue Wang and Islam I. Hussein. Awareness coverage control over large-scale domains with intermittent communications. IEEE Transactions on Automatic Control, 55(8):1850-1859, 2010.
    [35] Kevin M. Lynch, Ira B. Schwartz, Peng Yang, and Randy A. Freeman. Decentralized environmental modeling by mobile sensor networks. IEEE Trans- actions on Robotics, 24(3):710-724, 2008.
    [36] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3):357-375, 2009.
    [37] Mac Schwager, Francesco Bullo, David Skelly, and Daniela Rus. A ladybug exploration strategy for distributed adaptive coverage control. In IEEE In-ternational Conference on Robotics and Automation, pages 2346-2353. IEEE, 2008.
    [38] Tsen-Chang Lin and Yen-Chen Liu. Direct learning coverage control based on expectation maximization in wireless sensor and robot network. In Conference on Control Technology and Applications, pages 1784-1790. IEEE, 2017.
    [39] Jaeyong Lee, Avinash D. Dharne, and Suhada Jayasuriya. Potential _eld based hierarchical structure for mobile sensor network deployment. In Amer- ican Control Conference, pages 5946-5951. IEEE, 2007.
    [40] Farshid Abbasi, Afshin Mesbahi, and Javad Mohammadpour. Team-based coverage control of moving sensor networks. In American Control Conference, pages 5691-5696. IEEE, 2016.
    [41] Alyssa Pierson and Mac Schwager. Controlling noncooperative herds with robotic herders. IEEE Transactions on Robotics, 34(2):517-525, 2018.
    [42] Edwin K. P. Chong and Stanislaw H. Zak. An Introduction to Optimization, 4th Edition. Wiley, 2013.
    [43] Chris Y. T. Ma, David K. Y. Yau, Nung Kwan Yip, Nageswara S. V. Rao, and Jiming Chen. Stochastic steepest descent optimization of multipleobjective mobile sensor coverage. IEEE Transactions on Vehicular Technol- ogy, 61(4):1810-1822, 2012.
    [44] Wen Jiang and Milo_s _Zefran. Coverage control with information aggregation. In 52nd IEEE Conference on Decision and Control, pages 5421-5426, 2013.
    [45] Mar__a Santos, Yancy Diaz-Mercado, and Magnus Egerstedt. Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robotics and Automation Letters, 3(2):919-925, 2018.
    [46] Hao Fang Wei Sun, Li-Hua Dou. Cooperative pollution supervising and neutralization with multi-actuator-sensor network. Acta Automatica Sinica, 37(1):107 - 113, 2011.
    [47] Thomas W. Carley, Moussa A. Ba, Rajeev Barua, and David B. Stewart. Contention-free periodic message scheduler medium access control in wireless sensor/actuator networks. In 24th IEEE Real-Time Systems Symposium, pages 298-307, 2003.
    [48] Wen Hu, Nirupama Bulusu, Sanjay Jha, and Patrick Senac. An anycast service for hybrid sensor/actuator networks unsw computer science and engineering. 2003.
    [49] Adekunle Adepegba, Suruz Miah, and Davide Spinello. Multi-agent area coverage control using reinforcement learning, 2016.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE