簡易檢索 / 詳目顯示

研究生: 蔡旻辰
Tsai, Min-Chen
論文名稱: 絕緣高分子對聚(3-己基噻吩)薄膜電晶體之電穩定性影響研究
Studies on the electrical stability of poly(3-hexylthiophene) based thin film transistors with insulating polymers
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 有機薄膜電晶體聚(3-己基噻吩)混摻半導體穩定性
外文關鍵詞: organic thin film transistor, P3HT, poly(3-hexylthiophene), dipole effect, polyblends
相關次數: 點閱:107下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究Regioregular Poly(3-hexylthiophene)(RR-P3HT)於氮氣環境與一般大氣下的電晶體穩定性。由於以聚甲基丙烯酸甲酯(Polymethylmethacrylate ,PMMA)為修飾層之有機高分子RR-P3HT薄膜電晶體,其電流-時間關係圖中之電流隨著時間增加而上升,其原因為PMMA與RR-P3HT之介面處會產生偶極效應(dipole effect),偶極隨著閘極電壓增加而慢慢轉向,最後與電場平行,而扭轉過後的偶極可以強拉住載子使載子不被通道上的缺陷所影響,因此造成電流上升,本論文將探討元件之電流-時間關係圖與元件電特性之間的關係。
    本實驗以重摻雜矽基板作為元件基板,並利用絕緣高分子PMMA做兩部分探討,首先,將PMMA作為有機薄膜體之修飾層,由於分子量越大的PMMA有可能影響原本載子的路徑,分子量越小也可能使元件有較差的特性,本部分將探討不同分子量之PMMA對於元件電特性的影響,第二部分,將主動層RR-P3HT混摻絕緣高分子PMMA,研究不同比例之PMMA對於RR-P3HT是否能發揮抵擋大氣中水氧之作用,或者是會形成障礙影響載子傳輸,本部分研究不同比例之RR-P3HT/PMMA摻合物對於元件穩定性的影響。在元件的應用部分,本文將RR-P3HT之表面孔洞結構蒸鍍上N型半導體PTCDI-C13,在元件輸出特性曲線上,可得到操作在雙極性範圍之二次電流曲線圖,在元件轉換曲線中,得到由雙載子進行累積與空乏動作的V型曲線,證明此元件具有雙載子傳輸的能力。

    This study investigated the electrical characteristics and stability of poly(3-hexylthiophene) (P3HT)-based organic thin film transistors (OTFTs) with insulating polymers. In the first part, we studied the effects of the molecular weight of insulating poly(methyl methacrylates) (PMMA), which serve as a gate dielectric buffer layer, on the electrical characteristics of these P3HT-based OTFTs. In a nitrogen environment, the P3HT-based OTFTs based on PMMA buffers with various molecular weights all showed high electrical stability. In ambient air, we continued to observe the current decay behaviors of the P3HT-based OTFTs on PMMA buffers. In the second part, we studied the electrical stability of the P3HT:PMMA polyblend-based OTFTs with various compositions of polyblends. In a nitrogen environment, the introduction of PMMA into the semiconductive P3HT active channel improved the electrical stability of OTFTs. In ambient air, we found that the P3HT:PMMA (25:75) polyblend-based OTFTs exhibited the best stability after a long-term dynamic continuous operation.

    中文摘要 I Abstract III 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 有機光電元件與材料之簡介 1 1-2有機半導體載子傳輸機制 3 1-3有機薄膜電晶體概論 4 1-3-1有機薄膜電晶體元件結構 4 1-3-2有機薄膜電晶體操作原理 4 1-3-3有機薄膜電晶體之基本電特性公式 5 1-4實驗動機 8 第二章 實驗方法與元件製作 16 2-1實驗材料 16 2-1-1 有機半導體材料 16 2-1-2 絕緣高分子材料 16 2-1-3有機溶劑 17 2-1-4二氧化矽基板 17 2-2薄膜電晶體元件製程 17 2-2-1清洗基板 17 2-2-2溶液配製 18 2-2-3旋轉塗佈絕緣層 20 2-2-4熱蒸鍍金屬電極 20 2-2-5旋轉塗佈有機半導體層 20 2-3實驗相關儀器 21 2-3-1半導體參數分析儀 21 2-3-2 原子力顯微鏡 22 第三章 絕緣高分子對有機薄膜電晶體電特性之影響與表面結構之應用 25 3-1前言 25 3-2實驗方法 27 3-3實驗結果與討論 28 3-3-1 PMMA修飾層之分子量對電性的影響 28 3-3-2 RR-P3HT:PMMA主動層摻合比例對電性的影響 30 3-3-3利用表面結構應用至雙載子電晶體 32 3-4綜合討論 33 第四章 總結與未來展望 87 參考文獻 89

    [1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “ Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett., 39,1098 ,1977
    [2] A. Tsumura, H. Koezuka, T, Ando, “ Macromolecular electronic device: Field effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49(18), 1210-1212, 1986
    [3] M. Rockele, D. V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Muller, B. V. D. Putten, J. Genoe, P. Heremans, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Organic Electronics, 12, 1909-1913, 2011.
    [4] M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthaar, A. Gombert, “Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics”, Thin Solid Films, 516, 7181-7187, 2008.
    [5] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, A. Meyer, “Flexible, long-lived, large-area, organic solar cells”, Energy Mater., 91, 379-384, 2007.
    [6] M. Rockele, D. V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Muller, B. V. D. Putten, J. Genoe, P. Heremans, “Low- temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Organic Electronics, 12, 1909-1913, 2011.
    [7] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, “Flexible organic transistor and circuits with extreme bending stability”, Nature Materials, 9, 1015-1022, 2010.
    [8] D.K. Hwang, C. F-H, J. B. Kim, W. J. P. Jr., B. Kippelen, “Flexible and stable-processed organic field-effect transistors”, Organic Electronics, 12, 1108 ,2011.
    [9] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347, p.539, 1990.
    [10] Y. Guo, G. Yu, Y. Liu, “Functional organic field-effect transistors”,
    Advanced Materials, 22, 4427-4447, 2010.
    [11] S. Günes, H. Neugebaur, N. S. Sariciftci, “Conjugated
    polymer-based organic solar cells”, Chem. Rev., 107, 1324-1338,
    2007.
    [12] Y. Zhao, “Charge transfer in organic molecules for solar cells :
    theoretical perspective”, Chemical Society Review, 41, 1075-1087,
    2012.
    [13] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S.
    Yagyu,T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, T. Kurita, “Flexible AMOLED panel driven by bottomcontact OTFTs”, IEEE Electron Device Lett, 27(4), 249–251, 2006.
    [14] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T.
    Kamata, K. Yase, “Influence of moisture on device characteristics of
    polythiophene-based field-effect transistors”, Journal of Applied
    Physics, 95, 5088, 2004.
    [15] D.Kumaki, T. Umeda, S. Tokito, “Influence of H2O and O2 on
    threshold voltage shift in organic thin-film transistors:
    Deprotonation of SiOH on SiO2 gate-insulator surface”, Appl. Phys.
    Lett, 92, 093309, 2008.
    [16] H. Klauk, MarcusHalik, Ute Zschieschang, Günter Schmid,
    Wolfgang Radlik and Werner Weber, “High-mobility polymer gate
    dielectric pentacene thin film transistors”, J. Appl. Phys, 92, 5259,
    2002.
    [17] S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, “High
    mobility n-type thin-film transistors based on N, N′-ditridecyl
    perylene diimide with thermal treatments”, Appl. Phys. Lett, 89,
    112108, 2006.
    [18] Hyeok-Moo Lee, Hanul Moon, Hyo-Sik Kim, Yong-Nam Kim,
    Sung-Min Choi, Seung-hyup Yoo, Sung-Oh Cho, ” Abrupt
    heating-induced high-quality crystalline rubrene thin films for
    organic thin-film transistors”, Organic Electronics, 12, 1446–1453,
    2011.
    [19] Do-Hwan Kim, Yunseok Jang, Yeong-Don Park, Kilwon Cho,
    “Controlled One-Dimensional Nanostructures in
    Poly(3-hexylthiophene) Thin Film for High-Performance Organic
    Field-Effect Transistors”, J. Phys. Chem. B , 110, 15763-15768,
    2006.
    [20] G.Horowitz, P.Delannoy, “An analytical model for organic-based
    thin-film transistors“, J. Appl. Phys., 70, 469-475. 1991.
    [21] A. Miller, E. Abrahams, “Impurity conduction at low
    concentrations”, Phys. Rev., 120, 745-755, 1956.
    [22] D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V.
    Necliudov, and M. S. Shur, “An experimental study of contact
    effects in organic thin film transistors”, Journal of Applied Physics,
    100, 024509, 2006.
    [23] G. Horowitz, “Organic field-effect transistors”, Advanced
    Materials., 10, 365- 377, 1998.
    [24] Z. Bao, A. Dodabalapur and A. J. Lovinger, “Soluble and
    processable regioregular poly(3-hexylthiophene) for thin film
    field-effect transistor applications with high mobility”, Appl. Phys.
    Lett., 69, p.4108, 1996.
    [25] A. Babel, S. A. Jenekhe, “Field-effect mobility of charge carriers in
    blend of regioregularpoly(3-alkylthiophene)s”, J. Phys. Chem., 107,
    1749-1754, 2003.
    [26] A. Babel, S. A. Jenekhe, “Charge carrier mobility in blends of
    poly(9,9-dioctylfluorene) and poly(3-hexylthiophene)”,
    Macromolecules, 36, 7759-7764, 2003.
    [27] H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Cheng and X.W. Liang,
    “Thickness-Dependent Structure Evolutions and Growth Models in
    Relation to Carrier Transport Properties in Polycrystalline
    Pentacene Thin Films“, Adv. Funct. Mater., 17, 3639, 2007.
    [28] Yanmin Sun, “Polythiophene-based field-effect transistors with
    enhanced air stability”, Organic Electronics, 11, 351–355, 2008.
    [29] Y. Fu, F. Y. Tsai, “Air-stable polymer organic thin-film transistors
    by solution-processed encapsulation”, Organic Electronics., 12,
    179–184, 2011.
    [30] 林佳賢,“聚(3-己基噻吩)薄膜電晶體之穩定性研究及其應用”,
    2014
    [31] B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel,
    and V. Podzorov, “Origin of the bias stress instability in
    single-crystal organic field-effect transistors”, Phys. Rev., 82,
    085302 , 2010.
    [32] Yi-Sheng Lin, Bo-Liang Yeh, Min-Ruei Tsai, Horng-Long Cheng,
    Shyh-Jiun Liu, Fu-Ching Tang, and Wei-Yang Chou, “Initial
    time-dependent current growth phenomenon in n-type organic
    transistors induced by interfacial dipole effects”, Journal of Applied
    Physics, 117, 104507, 2015.
    [33] 林家暉,“研究P3HT/PMMA聚摻物應用於有機薄膜電晶體當氣
    體感應器”,2012.
    [34] R. Schmechel, M. Ahles, H. V. Seggem, “A pentacene ambipolar
    transistor : Experiment and theory”, Journal of Applied Physics, 98,
    084511, 2005.
    [35] T. A. Chen, “Regiocontrolled synthesis of poly(3-alkylthiophenes)
    mediated by rieke zinc: their characterization and solid-state
    properties”, J. Am. Chem. Soc., 117, 233, 1995.
    [36] H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slamima, “Thermal
    expansion coefficient of polycrystalline silicon and silicon dioxide
    thin films at high temperatures”, Journal of Applied Physics, 87,
    4189-4193, 2000.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE