簡易檢索 / 詳目顯示

研究生: 魏彰志
Wei, Chang-Chih
論文名稱: 開發扣鎖探針結合DNA 陣列技術應用於多重診斷細菌性病原
Development of diagnostic tools employing padlock probes and universal DNA array for multiplex detection of bacterial pathogens
指導教授: 鄧景浩
Teng, Ching-Hao
曾進忠
Tseng, Chin-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: 扣鎖探針診斷陣列
外文關鍵詞: padlock probes, array.diagnostic
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發可正確且同時診斷多種病原菌的檢測平台將有助於感染性疾病的治療。傳統以培養及生化測試為主的診斷方式受限於需要較長的鑑定時間及人為操作誤差;而以PCR為主的分子診斷技術缺點為效率不彰及診斷的準確度。扣鎖探針 (padlock probe)為一新型核酸檢測工具,其為一條長約100個鹼基的單股寡聚核苷,在其5’和3’端各別約有20個鹼基序列用來辨認與其互補的特定標的核醣核酸分子,聯結這兩端的中間序列則常被設計成有可被檢測的功能。其標的核醣核酸分子與扣鎖探針兩端互補的鹼基序列是連續的。因此,當單股寡核苷酸探針的兩端與之互補雜交後,原來呈直線的探針會彎曲成環形,在接合酶(ligase)的催化下,可將探針的兩個端點接合,使得這扣鎖探針扣成環形。然而,如果直線型的扣鎖探針沒有與其標的核醣核酸分子正確的互補雜交,接合酶也無法將探針接合成環形。因此,環型扣鎖探針的形成反應了其標的核醣核酸分子的存在。經過訊號放大後,可利用探針上的標籤(Tag)序列與一個含有多組標籤序列的DNA microarray做雜交檢測,藉此區分病原菌。為了改善現有的診斷技術,我們希望藉由結合扣鎖探針與DNA array技術開發一套檢測平台,並以此平台檢測造成泌尿道感染之病原菌。首先,我們設計出一組扣鎖探針,針對台灣地區常見的尿道感染致病菌 (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Gram-positive bacteria),接著調整出最佳的檢測條件。由實驗結果可知,探針的純度、使用濃度及不同類型的接合作用(ligation)皆會影響探針的靈敏性及特異性。調整好檢測條件後,我們測試各扣鎖探針對其標的病原的特異性與靈敏性,最低可偵測到2 pg genomic DNA及104~105菌數。我們以扣鎖探針檢測了41株臨床分離菌株。另外,我們成功藉由結合扣鎖探針與DNA array同時正確地偵測多種病原菌。在進行臨床檢驗前,我們先藉由與標準訊號比對的方式來估算菌量。最後,我們利用所開發的平台直接檢測臨床病人檢體並與傳統培養為主的資料進行比對,來測試此平台的可用性。希望這套檢測平台在未來能確實有效應用在臨床檢驗上,使感染性疾病診斷系統更加完善。

    Development of molecular approaches for pathogen detection is the key to improve treatment of infectious diseases. A new class of oligonucleotide probes, called padlock probes, has been developed for detecting pathogen-specific nucleotide sequences. A padlock probe comprises two target-complementary end-sequences which can recognize adjacent sequences on the target DNA (or RNA). When hybridizing to the correct target sequences, the ends of the probe get into adjacent and can be jointed by enzymatic ligation to form a circularized probe. Therefore, the production of the circular forms of the padlock probes indicates the existence of their target sequences. Then, the signals of the circularized probes can be amplified by PCR with primers recognizing the sequences in the padlock probes. In addition, each of the padlock probes contains a unique 20-bp sequence which can serve as a name tag. By combing DNA array analysis with the name tags, the existence of the circular forms of multiple padlock probes can be detected. Our objective is to develop a diagnostic tool utilizing padlock probes and DNA array analyses to simultaneously detect multiple bacterial pathogens causing urinary tract infections (UTI). We have constructed 5 padlock probes specifically targeting the five most common UTI bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Gram-positive bacteria), respectively. The optimized working conditions for the padlock probes to detect targets have been determined. Sensitivity and specificity of each padlock probes were also assessed. The lowest target DNA concentrations and the minimal bacterial numbers can be detected by the probes were around 2 pg and 104~105, respectively. So far, the probes have been used to successfully detect 41 bacterial isolates using PCR to check the existence of their circularized forms. We have also successfully detected multiple pathogens at the same time by combining padlock probe techniques and dot-blotting assays. Finally, we evaluate whether this diagnostic system is applicable in detecting bacterial UTI pathogens in clinical urine specimens.

    中文摘要 2 英文摘要 4 致謝 6 目錄 7 表目錄 10 圖目錄 11 附錄 12 符號及縮寫 13 緒論 14 實驗材料與方法 1.菌株及寡核苷酸序列 21 2.菌種的培養與保存方式 21 3.DNA 電泳分析 21 4.核酸回收商業套件法 21 5.聚合酶鏈反應 (Polymerase chain reaction;PCR) 22 6.聚丙烯醯氨膠電泳法(polyacrylamide gel electrophoresis 22 7.扣鎖探針之設計 23 8.扣鎖探針檢測 (Padlock detection) 23 9.扣鎖探針最佳化濃度調整 24 10.扣鎖探針靈敏度及discriminatory range檢測 25 11.點墨法 (Dot blot assays) 25 12.DNA 序列分析 26 13.染色體DNA萃取:商業套件法 (DNeasy Tissue Kit, QIAGEN) 26 14.染色體DNA萃取:傳統法 27 15. 染色體DNA萃取:微波爐法 27 16. 臨床菌株之檢測 28 17. 臨床檢體之檢測 28 結果 I.扣鎖探針檢測條件最佳化 1. 設計扣鎖探針 29 2. 測試設計探針的可行性 30 3. 調整偵測反應條件 (1) 偵測探針濃度對靈敏度及discriminatory range的影響 31 (2) 探針純度對檢測表現的影響 32 (3) 循環接合反應相較一般接合反應有較佳催化效率 32 (4) 接合反應中溫度因子對靈敏度及discriminatory range 的影響 33 (5) 鹽類離子濃度對聚合酶連鎖反應(PCR)的影響 34 (6) 循環接合及聚合酶連鎖反應循環數對靈敏度及 discriminatory range的影響 35 (7) 扣鎖探針檢測技術與PCR技術之比較 35 II.泌尿道病原菌之扣鎖探針特性檢測 1. 設計檢測泌尿道感染病原菌之扣鎖探針 36 2. 測試各探針的靈敏度及discriminatory range 36 (1) 測試各探針的靈敏度 37 (2) 測試各探針的discriminatory range 37 III.結合DNA陣列技術進行同時多重檢測 1. 以墨點法(Dot-blot assay)確認探針偵測的正確性 38 2. 鎖探針結合墨點法同時多重檢測病原16S rDNA 39 3. 扣鎖探針結合墨點法同時多重檢測病原genomic DNA 39 IV.結合扣鎖探針及墨點法應用於臨床檢測 1. 以扣鎖探針檢測臨床分離菌株 39 2. 以扣鎖探針組合直接偵測培養液中的病原菌 40 3. 以扣鎖探針檢測臨床檢體 41 討論 42 參考文獻 50 圖表 56 附錄 83 自述 87

    Ansari, B. M., F. Jewkes, et al. (1995). "Urinary tract infection in children. Part I: Epidemiology, natural history, diagnosis and management." J Infect 30(1): 3-6.
    Antson, D. O., A. Isaksson, et al. (2000). "PCR-generated
    padlock probes detect single nucleotide variation in
    genomic DNA." Nucleic Acids Res 28(12): E58.
    Baner, J., A. Isaksson, et al. (2003). "Parallel gene
    analysis with allele-specific padlock probes and tag
    microarrays." Nucleic Acids Res 31(17): e103.
    Baner, J., M. Nilsson, et al. (1998). "Signal
    amplification of padlock probes by rolling circle
    replication." Nucleic Acids Res 26(22): 5073-8.
    Barany, F. (1991). "Genetic disease detection and DNA
    amplification using cloned thermostable ligase." Proc
    Natl Acad Sci U S A 88(1): 189-93.
    Blaufox, M. D. (1994). "Current concepts in the diagnosis
    of urinary tract infection." Curr Opin Nephrol
    Hypertens 3(6): 629-30.
    Bodrossy, L. and A. Sessitsch (2004). "Oligonucleotide
    microarrays in microbial diagnostics." Curr Opin
    Microbiol 7(3): 245-54.
    Bollet, C., M. J. Gevaudan, et al. (1991). "A simple
    method for the isolation of chromosomal DNA from gram
    positive or acid-fast bacteria." Nucleic Acids Res 19
    (8): 1955.
    Brown, T. J. and R. M. Anthony (2000). "The addition of
    low numbers of 3' thymine bases can be used to
    improve the hybridization signal of oligonucleotides
    for use within arrays on nylon supports." J Microbiol
    Methods 42(2): 203-7.
    Bunney, W. E., B. G. Bunney, et al. (2003). "Microarray
    technology: a review of new strategies to discover
    candidate vulnerability genes in psychiatric
    disorders." Am J Psychiatry 160(4): 657-66.
    Chao, D. Y., B. S. Davis, et al. (2007). "Development of
    multiplex real-time reverse transcriptase PCR assays
    for detecting eight medically important flaviviruses
    in mosquitoes." J Clin Microbiol 45(2): 584-9.
    Chassy, B. M. and A. Giuffrida (1980). "Method for the
    lysis of Gram-positive, asporogenous bacteria with
    lysozyme." Appl Environ Microbiol 39(1): 153-8.
    Clayton, C., K. Kleanthous, et al. (1991). "Detection and
    identification of Helicobacter pylori by the
    polymerase chain reaction." J Clin Pathol 44(6): 515-
    Denef, V. J., J. Park, et al. (2003). "Validation of a
    more sensitive method for using spotted
    oligonucleotide DNA microarrays for functional
    genomics studies on bacterial communities." Environ
    Microbiol 5(10): 933-43.
    Felmingham, D., A. P. Wilson, et al. (1992). "Enterococcus
    species in urinary tract infection." Clin Infect Dis
    15(2): 295-301.
    Griebling, T. L. (2005). "Urologic diseases in america
    project: trends in resource use for urinary tract
    infections in men." J Urol 173(4): 1288-94.
    Haible, D., S. Kober, et al. (2006). "Rolling circle
    amplification revolutionizes diagnosis and genomics
    of geminiviruses." J Virol Methods 135(1): 9-16.
    Hardenbol, P., J. Baner, et al. (2003). "Multiplexed
    genotyping with sequence-tagged molecular inversion
    probes." Nat Biotechnol 21(6): 673-8.
    Henchal, E. A., S. L. Polo, et al. (1991). "Sensitivity
    and specificity of a universal primer set for the
    rapid diagnosis of dengue virus infections by
    polymerase chain reaction and nucleic acid
    hybridization." Am J Trop Med Hyg 45(4): 418-28.
    Housby, J. N., S. H. Thorbjarnardottir, et al.
    (2000). "Optimised ligation of oligonucleotides by
    thermal ligases: comparison of Thermus scotoductus
    and Rhodothermus marinus DNA ligases to other
    thermophilic ligases." Nucleic Acids Res 28(3): E10.
    Inoue, J., Y. Shigemori, et al. (2006). "Improvements of
    rolling circle amplification (RCA) efficiency and
    accuracy using Thermus thermophilus SSB mutant
    protein." Nucleic Acids Res 34(9): e69.
    Klein, R. S. (1994). "Criteria for the diagnosis of
    urinary tract infection." Curr Opin Nephrol Hypertens
    3(6): 652-5.
    Koch, J. (2006). "Single-copy and point mutation analysis
    (rolling-circle PRINS)." Methods Mol Biol 334: 41-8.
    Kuhn, H. and M. D. Frank-Kamenetskii (2005). "Template-
    independent ligation of single-stranded DNA by T4 DNA
    ligase." FEBS J 272(23): 5991-6000.
    Larson, M. J., C. B. Brooks, et al. (1997). "Can urinary
    nitrite results be used to guide antimicrobial choice
    for urinary tract infection?" J Emerg Med 15(4): 435-8
    Larsson, C., J. Koch, et al. (2004). "In situ genotyping
    individual DNA molecules by target-primed rolling-
    circle amplification of padlock probes." Nat Methods 1
    (3): 227-32.
    Lau, S. M., M. Y. Peng, et al. (2004). "Resistance rates
    to commonly used antimicrobials among pathogens of
    both bacteremic and non-bacteremic community-acquired
    urinary tract infection." J Microbiol Immunol Infect
    37(3): 185-91.
    Laupland, K. B., T. Ross, et al. (2007). "Community-onset
    urinary tract infections: a population-based
    assessment." Infection 35(3): 150-3.
    Lohmann, J. S., M. Stougaard, et al. (2007). "A new
    enzymatic route for production of long 5'-
    phosphorylated oligonucleotides using suicide
    cassettes and rolling circle DNA synthesis." BMC
    Biotechnol 7: 49.
    Lu, X., X. Peng, et al. (1998). "[Polymerase chain
    reaction associated with dig-labelled DNA
    hybridization of mip gene to identify new isolated Legionella pneumophila strains]." Zhonghua Jie He He Hu Xi
    Za Zhi 21(3): 154-6.
    Marsolais, G., R. Dubuc, et al. (1994). "Importance of
    primer selection in the application of PCR technology
    to the diagnosis of bovine leukemia virus." J Vet
    Diagn Invest 6(3): 297-301.
    Masschalck, B., D. Deckers, et al. (2002). "Lytic and
    nonlytic mechanism of inactivation of gram-positive
    bacteria by lysozyme under atmospheric and high
    hydrostatic pressure." J Food Prot 65(12): 1916-23.
    Millard, P. J., L. E. Bickerstaff, et al.
    (2006). "Detection of infectious haematopoietic
    necrosis virus and infectious salmon anaemia virus by
    molecular padlock amplification." J Fish Dis 29(4):
    201-13.
    Mullis, K. B. and F. A. Faloona (1987). "Specific
    synthesis of DNA in vitro via a polymerase-catalyzed
    chain reaction." Methods Enzymol 155: 335-50.
    Neidhardt, F et al., Escherichia coli and Salmonella
    typhimurium, 2nd ed., vol. I.
    Nilsson, M., J. Baner, et al. (2002). "Making ends meet in
    genetic analysis using padlock probes." Hum Mutat 19
    (4): 410-5.
    Nilsson, M., F. Dahl, et al. (2006). "Analyzing genes
    using closing and replicating circles." Trends
    Biotechnol 24(2): 83-8.
    Nilsson, M., H. Malmgren, et al. (1994). "Padlock probes:
    circularizing oligonucleotides for localized DNA
    detection." Science 265(5181): 2085-8.
    Papin, J. F., W. Vahrson, et al. (2004). "SYBR green-based
    real-time quantitative PCR assay for detection of
    West Nile Virus circumvents false-negative results
    due to strain variability." J Clin Microbiol 42(4):
    1511-8.
    Remaut, E., H. Tsao, et al. (1983). "Improved plasmid
    vectors with a thermoinducible expression and
    temperature-regulated runaway replication." Gene 22
    (1): 103-13.
    Saiki, R. K., D. H. Gelfand, et al. (1988). "Primer-
    directed enzymatic amplification of DNA with a
    thermostable DNA polymerase." Science 239(4839): 487-
    91.
    Shanagar, J. (2005). "Purification of a synthetic
    oligonucleotide by anion exchange chromatography:
    method optimisation and scale-up." J Biochem Biophys
    Methods 64(3): 216-25.
    Shoemaker, D. D., D. A. Lashkari, et al.
    (1996). "Quantitative phenotypic analysis of yeast
    deletion mutants using a highly parallel molecular
    bar-coding strategy." Nat Genet 14(4): 450-6.
    Sun, C. P., J. C. Liao, et al. (2005). "Rapid, species-
    specific detection of uropathogen 16S rDNA and rRNA
    at ambient temperature by dot-blot hybridization and
    an electrochemical sensor array." Mol Genet Metab 84
    (1): 90-9.
    Szemes, M., P. Bonants, et al. (2005). "Diagnostic
    application of padlock probes--multiplex detection of
    plant pathogens using universal microarrays." Nucleic
    Acids Res 33(8): e70.
    Toye, B., W. Woods, et al. (1998). "Inhibition of PCR in
    genital and urine specimens submitted for Chlamydia
    trachomatis testing." J Clin Microbiol 36(8): 2356-8.
    Ulger, C., G. A. Toruner, et al. (2003). "Comprehensive
    genome-wide comparison of DNA and RNA level scan
    using microarray technology for identification of
    candidate cancer-related genes in the HL-60 cell
    line." Cancer Genet Cytogenet 147(1): 28-35.
    Uzuka, R., H. Kawashima, et al. (2004). "Rapid diagnosis
    of bacterial meningitis by using multiplex PCR and
    real time PCR." Pediatr Int 46(5): 551-4.
    Vora, G. J., C. E. Meador, et al. (2004). "Nucleic acid
    amplification strategies for DNA microarray-based
    pathogen detection." Appl Environ Microbiol 70(5):
    3047-54.
    Wang, B., S. J. Potter, et al. (2005). "Rapid and
    sensitive detection of severe acute respiratory
    syndrome coronavirus by rolling circle
    amplification." J Clin Microbiol 43(5): 2339-44.
    Weisburg, W. G., S. M. Barns, et al. (1991). "16S
    ribosomal DNA amplification for phylogenetic study."
    J Bacteriol 173(2): 697-703.
    Williams, R. D. (2005). "Urologic Diseases in America
    project." J Urol 173(3): 679.
    Xiang, H., L. Xiong, et al. (2007). "Rapid simultaneous
    detection and identification of six species Candida
    using polymerase chain reaction and reverse line
    hybridization assay." J Microbiol Methods 69(2): 282-
    7.
    Zhang, D. Y., M. Brandwein, et al. (1998). "Amplification
    of target-specific, ligation-dependent circular
    probe." Gene 211(2): 277-85.
    Zuker, M. (2003). "Mfold web server for nucleic acid
    folding and hybridization prediction." Nucleic Acids
    Res 31(13): 3406-15.

    下載圖示 校內:2013-08-29公開
    校外:2013-08-29公開
    QR CODE