簡易檢索 / 詳目顯示

研究生: 康鈞誌
Kang, Chin-chih
論文名稱: 運用模式樹建構半導體測試時間之診斷模式
Using model tree to build up diagnostic model of semiconductor probing time
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 41
中文關鍵詞: 數值預測模式樹線性迴歸式
外文關鍵詞: linear regression model, numeric prediction, model tree
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 身處在一個資訊快速流通的時代,如何能夠將資料轉化成為有用的資訊成為一個重要的課題。資料探勘中的模式樹(model tree)運用了線性迴歸模式(linear regression model)建構成樹狀結構,能夠清楚呈現資料之間關係以及所包含的資訊。本研究的資料來自於晶圓測試廠的人工料機與測試結果的資料,其中包含了數值屬性與名目屬性,然而模式樹所處理的資料必須是數值屬性,M5’具備處理此兩類資料的特性,本研究採取此方法用以建構模式樹;在建構模式樹之前必須先對資料進行前置處理,包括了資料整合、資料清理與轉換及資料正規化,將前置處理過後的資料根據測試時間分割成為正常與異常兩資料區塊,接著運用M5’建立兩區塊的模式樹,分別比較兩模式樹之的內部節點(internal node)與葉部節點(leaf node)之間的差異,從兩者差異中分析以獲取造成測試時間差異的資訊,提供相關人員對造成時間差異點進行處理。

    Living in the age that information flows so fast. How to convert data into useful information becomes an important issue. Model trees have a tree structure with leaves containing linear regression models. They could reveal the relationship between attributes and the information embedded in data. The data gather in wafer testing factory contain attributes about operators, machines, material, and processes. An attribute type can be either numeric or nominal. Model tree is originally designed for processing numeric attributes. M5’ could deal with both attribute types, hence this study adopts this tool for building model trees. Before building a model tree, the preprocess of data includes data integration, data clearance, data transformation, and data normalization. Then data will be divided into normal and abnormal groups based on their wafer testing times. The model trees built for the two data groups are compared to distinguish their differences in internal nodes and leaf nodes. The attributes that are critical for increasing the test time of a wafer are extracted, and this information could let related staffs know the appropriate steps for dealing with an abnormal wafer.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究範圍與限制 2 第四節 研究架構 3 第二章 文獻探討 4 第一節 資料探勘在產業運用 4 2.1.1決策樹 4 2.1.2 CART 5 2.1.3 M5及M5' 7 第二節 模式樹之數值預測 8 2.2.1長成方法 9 2.2.2修剪及平滑化 10 第三節 不同模式樹建立方式 10 2.3.1 M5’ 11 2.3.2 RETIS 14 第四節線性迴歸 16 2.4.1簡單線性迴歸 16 2.4.2多元線性迴歸 17 第三章 研究方法 18 第一節 資料屬性 18 第二節 前置處理 18 3.2.1 資料整合 18 3.2.2 資料清理與轉換 20 3.2.3 資料正規化 21 第三節 模式樹之建構與診斷 21 3.3.1 內部節點 22 3.3.2 葉部節點 23 第四章 實證分析 24 第一節 資料整理 24 4.1.1 資料筆數整理 26 4.1.2 消除資料的重複性 28 4.1.3 資料清理及資料正規化 29 第二節 執行結果 30 4.2.1 測試結果說明與定義 30 4.2.2 正常測試時間資料分析 31 4.2.3 異常測試時間資料分析 33 4.2.4 小結 36 第五章 結論與建議 38 參考文獻 40

    湯穎奇 (2005),應用K-means 分群演算法於選取模式樹節點屬性之研究,碩士論文,國立成功大學工業與資訊管理研究所。
    陳建智 (2007),應用模式樹建構印刷電路板裝配之表面黏著製程品質管制模型之研究,碩士論文,國立成功大學工業與資訊管理研究所。
    郭信宏 (2008),應用資料探勘技術於面板檢測實證研究,碩士論文,國立中央大學工業管理研究所。
    羅國弘,蔡智政,賈方霈,孫天龍,劉泰興,廖建華 (2002),資料探勘技術於電子產業製程資料分析—以IC 及PCB 為例, PCB 製造與管理技術研討會。
    Anderson, D.R., Sweeney, D.J., Williams, T.A., Chen, J.C.(2006) Statistics for Business and Economics: A Practical Approach , Thomson Learning, Singapore.
    Backus, P., Janakiram, M., Mowzoon, S., Runger, G.C., and Bhargava, A. (2006). Factory cycle-time prediction with a data-mining approach, IEEE Transactions on Semiconductor Manufacturing, 19(2), 252-258.
    Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees, Belmont, CA: Wadsworth International Group.
    Chaudhuri, P., Huang, M.C., Loh, W.Y., and Rubin, R. (1994). Piecewise-polynomial regression trees, Statistica Sinica, 4, 143-167.
    Chien, C.F., Wang, W.C., and Cheng, J.C. (2007). Data mining for yield enhancement in semiconductor manufacturing and an empirical study, Export Systems with Applications, 33, 192-198.
    Dobra, A. and Gehrke, J.E. (2002). SECRET: A Scalable Linear Regression Tree Algorithm, Proceedings of the English ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 481-487.
    Heisig, S. and Moyle, S. (2004). Using model trees to characterize computer resource usage, Proceedings of the 1st ACM SIGSOFT Workshop on Self-managed System.,80-84
    Karalic, A. (1992). Employing linear regression in regression tree leaves, Proceedings of the 10th European Conference on Artificial Intelligence, 440-441.
    Loh, W.Y. (2002), Regression trees with unbiased variable selection and interaction detection, Statistica Sinica, 12, 361-386.
    Quinlan, J.R. (1992). Learning with continuous classes, Proceedings of the Australian Joint Conference on Artificial Intelligence, 343-348.
    Quinlan, J.R. (1993). Combining instance-based and model-based learning, Proceedings of the 10th International Conference on Machine Learning, 236-243.
    Sha, D.Y., Storch, R.L., and Liu, C.H. (2007). Development of a regression-based method with case-based tuning to solve the due date assignment problem, International Journal of Production Research, 45(1), 65-82.
    Skinner,K.R., Montgomery,D.C., Runger, G.C., Fowler, J.W., McCarville, D.R., Rhoads, T.R., and Standley, J.D. (2002), Multivariate statistical methods for modeling and analysis of wafer probe test data, IEEE Transactions on Semiconductor Manufacturing, 15(4), 523-530.
    Solomatine, D.P. (2002). Application of data-driven modeling and machine learning in control of water resources, Computational Intelligence in Control, 197-217.
    Wang, Y. and Witten, I.H. (1997). Inducing model trees for continuous classes, Proceedings of poster papers of the 9th European Conference on Machine Learning,128-137.
    Witten, I.H. and Frank, E. (2005). DATA MINING:Practical Machine Learning Tools and Techniques, Morgan kaufmann, San Francisco.

    下載圖示 校內:2010-01-17公開
    校外:2010-01-17公開
    QR CODE