簡易檢索 / 詳目顯示

研究生: 林延修
Lin, Yen-Hsiu
論文名稱: 應用引入邊界因素之球狀支持向量機的多類別資料分類方法論
A Maximal Margin Sphere-structure Multi-class Support Vector Machine
指導教授: 蔣榮先
Chiang, Jung-Hsien
郝沛毅
Hao, Pei-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 64
中文關鍵詞: 支持向量資料描述支持向量機
外文關鍵詞: Support Vector Machines, Support Vector Data Description
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的支持向量機在進行資料分類的時候,僅考慮到位在這兩個不同類別資料群間的邊界,並尋找邊界最大的地方,從邊界的正中央將這兩個類別的資料分開,而完成資料分類的工作,它沒有利用到其它和各類別資料的分佈情形有關的資訊。本論文為了將更多和資料分佈有關的資訊也納入考量,所以使用了支持向量資料描述,為每個類別在特微空間找一個超球體將此類別緊密的包起來,隨著各類別資料點分佈的位置和疏密等不同,則得到的超球體其球心位置和半徑大小就會有所不同,再用此超球體來代替此類別,使用相似度函數去量測一筆待分類資料和各超球體的相似度,再依據相似度的大小來做分類。另外,我們還將邊界的概念與支持向量資料描述結合,以進一步的提升分類的正確率。實驗證明我們的方法在一些資料集上的正確率是比傳統的支持向量分類器佳的,而將邊界納入考量的做法,的確也對正確率的提升有所助益。

    Support vector machine is a maximal margin classifier, which finds the maximal margin between the two classes and uses the hyper-plane right located in the middle of the maximal margin to distinguish the class of the input data. It does not consider the distribution in each class. In order to take the information of data distribution into consideration, our approach uses the support vector data description, introduced by Tax et al, to seek hyper-spheres that tightly enclose the data for each class. The hyper-spheres vary with the distribution (e.g. location, density... etc.) of each class, so those hyper-spheres indeed character some distributive properties of each class. Then we propose some similarity functions to determine the similarity between a data point and each hyper-sphere. The data point will be classified as the class (hyper-sphere) with maximal similarity. In addition, we combine support vector data description with the concept of maximal margin. Experimental results show that the proposed method is better than support vector machine on some benchmark datasets, and the combination of support vector data description with the concept of maximal margin can effectively improve the classification accuracies.

    第一章 導論…………………………………………………………………………….. 1 1.1 前言……………………………………………………………………………. 1 1.2 研究動機………………………………………………………………………. 1 1.3 解決方法………………………………………………………………………. 2 1.4 論文架構………………………………………………………………………. 2 第二章 文獻回顧……………………………………………………………………….. 4 2.1 支持向量分類器………………………………………………………………. 4 2.2 延伸至多類別資料分類的支持向量分類器…………………………………. 7 2.2.1 超平面結構的多類別資料支持向量分類器….………………………. 8 2.3 超球體結構的支持向量分類器………….………………….…………….…. 11 2.4 超平面結構的支持向量機與超球體結構的支持向量機之分類法比較..…. 14 第三章 應用引入邊界因素之球狀支持向量機的多類別資料分類方法論………… 15 3.1 訓練與決策流程…………………………………………………………..…. 15 3.2 概念與數學式推導………………………………………………………..…. 16 3.3 決策函數…………………………………………………………..…………. 22 3.4 邊界參數( )的特性……………………………………………………..…. 27 3.4.1 邊界參數的範圍……………………………………………………… 27 3.4.2 邊界參數與支持向量個數的關係………………………………..….. 28 3.4.3 邊界參數的大小對超球體的影響………………………………..….. 31 第四章 實驗設計與結果分析………………………………………………………… 36 4.1 高斯分佈人造資料集……………………………………………………..…. 36 4.1.1 實驗描述……………………………………………………………… 36 4.1.2 實驗過程與結果…………………………………………………..….. 37 4.2 與超平面結構的支持向量機在真實資料集之分類效果比較……………... 40 4.2.1 實驗描述……………………………………………………………… 40 4.2.2 實驗過程……………………………………………………………… 41 4.2.3 實驗結果……………………………………………………………… 42 4.3 不同支持向量資料描述在真實資料集之分類效果比較………………..…. 44 4.3.1 實驗描述與過程……………………………………………………… 45 4.3.2 實驗結果……………………………………………………………… 45 第五章 結論與未來研究方向………………………………………………………… 52 5.1 結論…………………………………………………………………………... 52 5.2 未來研究方向………………………………………………………………... 53

    [1] C. L. Blake and C. J. Merz. (1998) UCI repository of Machine Learning Databases. Univ. California, Dept. Inform. Comput. Sci., Irvine, CA. [Online]. Available: http://kdd.ics.uci.edu/

    [2] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Comparison of classifier methods: A case study in handwriting digit recognition,” in Proc. Int. Conf. Pattern Recognition., pp. 77-87, 1994.

    [3] C.C. Chang and C.J. Lin. (2001). LIBSVM: A Library for Support Vector Machines. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

    [4] C.C. Chen. (2005) Computational Mathematics. Univ. Tsing Hua, Institute of Information Systems & Applications. Data Available at http://www.cs.nthu.edu.tw/~cchen/ISA5305/isa5305.html

    [5] J.H. Chiang and P.Y. Hao, “A New Kernel-Based Fuzzy Clustering Approach: Support Vector Clustering with Cell Growing,” IEEE Trans. On Fuzzy Systems, vol. 11, pp. 518-527, 2003.

    [6] T.M. Cover, “Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition,” IEEE Trans. Electronic Computers, vol. 14, pp. 326-334, 1965.

    [7] N. Cristianini and J. Shawe-Tayor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

    [8] R.E. Fan, P.H. Chen, and C.J. Lin, “Working Set Selection Using Second Order Information for Training Support Vector Machines,” Journal of Machine Learning Research, vol. 6, pp. 1889-1918, 2005.

    [9] C.W. Hsu and C.J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Trans. On Neural Networks, vol. 13, pp. 415-425, 2002.

    [10] H. Hu, Y. Pan, R. Harrison, and P. C. Tai, “Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier,” IEEE Trans. NanoBiosci., vol. 3, pp. 265-271, 2004.

    [11] T. Joachims, Learning to Classify Text using Support Vector Machines: Methods, Theory, and Algorithms, Kluwer Academic Publishers, 2002.

    [12] U. KreBel, “Pairwise classification and support vector machines,” in Advances in Kernel Methods—Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. 
    Smola, Eds. MIT Press, Cambridge, MA, pp. 255-268, 1999.

    [13] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning, Neural and Statistical Classification, Ellis Horwood, 1994. [Online]. Available: http://www.maths.leeds.ac.uk/~charles/statlog/

    [14] T. Mitchell, Machine Learning, McGraw Hill, 1997. Data Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

    [15] M. R. Moya, M. W. Koch, and L. D. Hostetler, “One-class classifier networks for target recognition applications,” in Proc. World Congress on Neural Networks, International Neural Network Society(INNS), pp. 797-801, 1993.

    [16] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods—Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola, Eds. MIT Press, Cambridge, MA, pp. 185-208, 1999.

    [17] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAG’s for multiclass classification,” in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, vol. 12, pp. 547-553, 2000.

    [18] M. Pontil and A. Verri, “Support Vector Machines for 3D Object Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no 6, pp. 637-646, 1998.

    [19] D. M.J. Tax and R. P.W. Duin, “Support Vector Domain Description,” Pattern Recognition Letters, vol. 20 pp. 11-13, 1999.

    [20] D. M.J. Tax, One-class classification; Concept-learning in the absence of counter-examples, Ph.D. thesis, Delft University of Technology, 2001.

    [21] D. M.J. Tax and R. P.W. Duin, “Support Vector Data Description,” Machine Learning, vol. 54 pp. 45-66, 2004.

    [22] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

    [23] J. Wang, P. Neskovic, and L. N. Cooper, “Pattern Classification Based on Minimum Bounding Spheres,” in International Conference on Intelligent Computing(ICIC), pp. 1969-1978, 2005.

    [24] J. Wang, P. Neskovic, and L. N. Cooper, “Pattern Classification via Single Spheres,” Lecture Notes in Artificial Intelligence, vol. 3735 pp. 241-252, 2005.

    [25] J. Weston and C. Watkins, “Multi-class Support machines,” in Proceedings of ESANN99, M. Verleysen, Eds. Brussels, 1999.

    [26] Q. Wu, X. Shen, Y. Li, G. Xu, W. Yan, G. Dong, and Q. Yang, “Classifying the Multiplicity of the EEG Source Models Using Sphere-Shaped Support Vector Machines,” IEEE Trans. On Magnetics, vol. 41, pp. 1912-1915, 2005.

    [27] M.L. Zhu, S.F. Chen, and X.D. Liu, “Sphere-structured support vector machines for multi-class pattern recognition,” Lecture Notes in Computer Science, vol. 2639 pp. 589-593, 2003.

    下載圖示 校內:2007-08-07公開
    校外:2007-08-07公開
    QR CODE