| 研究生: |
張廷愷 Chang, Tin-Kai |
|---|---|
| 論文名稱: |
應用田口實驗法優化雷射鈷基金屬披覆參數之研究 Optimization on the kW fiber laser cladding parameters by Taguchi Method |
| 指導教授: |
趙儒民
Chao, Ru-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 田口實驗規劃法 、雷射積層 、S316L 、Stellite 6 、披覆厚度預估 |
| 外文關鍵詞: | DED, Stellite 6, Taguchi Methods, Microstructure, Hardness |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為尋求鈷基合金粉末在雷射披覆作業之參數優化,採用田口實驗規劃法探討不同加工參數所造成的影響。其中因粉末材料性質與機台加工限制,加工參數選定與優化將是本文關注的目標;研究選定四個因子為:粉末流量、移動速度、雷射功率及Z軸抬升量來做實驗規劃,輸出結果為披覆厚度及稀釋率;優化前實驗披覆厚度約為2.65mm、稀釋率約為14%,優化參數後,厚度可達5.12mm,稀釋率降為4%;由田口分析果顯示提升披覆厚度及降低稀釋率的顯著因子為粉末流量,次要因子為移動速度,透過調變顯著及次要因子之參數可以最有效的達到所期待的目標;對田口實驗優化後的樣品進行顯微觀察,觀察到Stellite 6的典型結構,由樹枝狀的碳化鉻組織以及枝晶間的鈷固溶體組成,硬度量測得到穩定且高硬度,披覆層硬度為566±10 HV;透過實驗分析還發現到訊噪比與披覆厚度與稀釋率之間有著指數函數關係,吾人亦提出一簡易之計算方法,在選定加工參數後可估算出披覆厚度及稀釋率。
It is well known that direct energy deposition can be applied to metal 3D printer or cladding super alloy material on metal substrate。This paper reports a system integration result of a kW-class Yb-doped fiber laser and demonstrates the cladding of the Stellite 6 on the SKD61 substrate. Through the Taguchi Experiment, optimal set of cladding parameters to increase the thickness using Stellite 6 powder is found by changing powder feed rate, laser power, scan speed and Z-axis shifting. Analysis and discussion the microstructure and the hardness on the cladding material, dilution zone, heat-affected zone and the substrate are reported. Results can be directly used as a reference for subsequent engineering applications.
[1] M. Hasan, M.E. Mazid and R. Clegg, (2016, 12), The Basics of Stellites in Machining Perspective, International Journal of Engineering Materials and Manufacture, 1(2), 35-50.
[2] M. M. Ferozhkhan, M. Duraiselvam, K. G. kumar and R. Ravibharath, (2016), Plasma Transferred Arc Welding of Stellite 6 Alloy on Stainless Steel for Wear Resistance. Procedia Technology, 25, 1305 – 1311.
[3] Gas shielded arc welding processes (TIG/MIG/MAG), Retrieved from Science, Maths and Technology, OpenLearn.
[4] M.I. Boulos, (2017), Plasma Torches for Cutting, Welding and PTA Coating, Handbook of Thermal Plasmas, 1-83.
[5] I. Gibson, D. Rosen and B. Stucker, (2015). Additive Manufacturing Technologies (Second Edition ed.), Springer.
[6] J.P. Kruth, (1991), Material Incress Manufacturing by Rapid Prototyping Techniques, Keynote Papers, 40(2), 603-614.
[7] A.C. D’Oliveira, P.C. da Silva and R.M. Vilar, (2002, 10 28). Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding. Surface and Coatings Technology, 153, 203–209.
[8] D.W. Deng, C.P. ZHANG, R. Chen and H.F. Xia ,(2013). Microstructure and Microhardness of 17-4PH Deposited with Co-based Alloy Hardfacing Coating. Physics Procedia(50 ), 177–184.
[9] J. Son, H. Yoon, K. Lee, S. Park and D. Shim, (2019, 2 20). Investigation into High Temperature Interfacial Strength of Heat Resisting Alloy Deposited by Laser Melting Process. Metals and Materials International, 26, 384–394.
[10] X. Cao, M. Xiao, M. Jahazi, J. Fournier and M. Alain, (2008). Optimization of Processing Parameters During Laser Cladding of ZE41A-T5 Magnesium Alloy Castings Using Taguchi Method, Materials and Manufacturing Processes, 23(4), 413-418.
[11] Steel Cutting – Which laser is better ? Co2 or Fiber?, Retrieved from WENI SOLUTION.
[12] Multi-Axis Laser Systems, Retrieved from IPG Photonics.
[13] TruPrint 5000, Trumpf.
[14] TruPrint 3000, Retrieved from Trumpf.
[15] AMH-350, Retrieved from AMH Series.
[16] U. de Oliveira, V. Ocelı´k and J.Th.M. De Hosson, (2005,8). Analysis of coaxial laser cladding processing conditions. Surface & Coatings Technology, 197, 127-136.
[17] W.C. Lin and C. Chen, (2006), Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding. Surface Coatings Technology, 200, 4557-4563.
[18] K.Y. Luo, X. Jing, J. Sheng, G.F. Sun, Z. Yan and J.Z. Lu, (2016), Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment, Journal of Alloys and Compounds, 673, 158-169.
[19] C. Ding, Xu Cui, J. Jiao and P. Zhu, (2018) Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique, Materials, 11(22), 2401.
[20] C. Leinenbach, A. Al-Badri and M. Roth, (2010), Interface microstructure of Stellite-6 coatings on a 12%Cr steel after long term thermal exposure, Materials Science and Engineering Technology, 41(10), 825-891.
[21] A.S.C.M. d’Oliveira, R. Vilar and C.G. Feder, (2002), High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings, Applied Surface Science, 201, 154–160.
[22] STELLITE 6 ALLOY, Delore Stellite 6.
[23] 石佩璇,千瓦級雷射的溫場效應對金屬披覆成效之研究,國立成功大學系統所碩士論文,2020。
校內:2025-09-01公開