簡易檢索 / 詳目顯示

研究生: 劉欣婷
Liu, Hsun-Ting
論文名稱: 預力混凝土材料組合律之數值模擬
指導教授: 胡宣德
HU, HSUAN-TEH
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 82
中文關鍵詞: 預力鋼鍵預力混凝土
外文關鍵詞: prestressed concrete
相關次數: 點閱:64下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   人們在建造結構物時,最常見的材料為木材、鋼料、鋼筋混凝土和預力混凝土。鋼筋混凝土之獨特性在於將鋼筋和混凝土兩種材料結合成一體來使用,不僅能降低成本,而且堅固性、耐用性、保溫性能也表現的較好。

      在觀念上,鋼筋混凝土式兩種材料的結合,混凝土具有高抗壓強度,但抗張能力卻很差,而埋設於混凝土內之鋼筋卻剛好能提供所需之抗拉力強度。

      在不以進行破壞試驗來預測結構行為時,利用有限元素法對結構作數值模擬,以瞭解其行為模式以及受力之變形行為,是一種較為經濟並合理與具高可性度,並為工程實務界所廣泛接受之方法。
    本文使用ABAQUS套裝軟體模擬文獻中以鋼筋混凝土為材料之模型,以驗證數值分析模式之可靠度。

    none

    摘要••••••••••••••••••••••••••••Ⅰ 誌謝••••••••••••••••••••••••••••Ⅱ 目錄••••••••••••••••••••••••••••Ⅲ 表目錄•••••••••••••••••••••••••••Ⅵ 圖目錄•••••••••••••••••••••••••••Ⅷ 第一章 序論•••••••••••••••••••••••1 1.1 研究動機•••••••••••••••••••1 1.2 本文內容•••••••••••••••••••2 第二章 鋼筋混凝土的材料行為••••••••••3 2.1 混凝土的材料特性•••••••••••••3 2.1.1 最大應力準則••••••••••••••••3 2.1.2 混凝土雙軸行為••••••••••••••6 2. 2 鋼筋的材料特性•••••••••••••••7 2.3 預力鋼鍵的材料特性••••••••••10 第三章 混凝土材料組合率及降伏準則••••13 3.1 應力不變量••••••••••••••••••13 3.1.1 主應力••••••••••••••13 3.1.2 偏差應力張量與其不變量•15 3.2 降伏判斷準則••••••••••••••••••17 3.2.1 崔司卡降伏準則•••••••••18 3.2.2 孟米瑟斯降伏準則••••••••18 3.2.3 莫耳-庫倫降伏準則•••••••19 3.3 ABAQUS對混凝土材料行為之模擬••••••21 3.3.1 開裂簡介及模式說明•••••••22 3.3.2 混凝土的彈-塑性模式••••••24 3.3.2.1 應變率•••••••••••••••24 3.3.2.2 壓力降伏••••••••••••••24 3.3.2.3 材料硬化••••••••••••••26 3.3.2.4 塑性流•••••••••••••••26 3.3.3 開裂檢測與彈性損壞••••••••••••28 3.3.3.1 張力加勁••••••••••••••29 3.3.3.2 剪力保留••••••••••••••33 3.3.3.3 應變率•••••••••••••••34 3.3.3.4 降伏••••••••••••••••34 3.3.3.5 塑性流•••••••••••••••35 3.3.3.6 材料硬化••••••••••••••36 第四章 數值模型之建立與分析結果•••••••••••••••37 4.1 數值模型的建立與材料性質描述••••••••••••37 4.1.1 CASE1••••••••••••••••••••37 4.1.2 CASE2••••••••••••••••••••39 4.1.3 CASE3••••••••••••••••••••40 4.2 數值模型分析結果••••••••••••••••••41 4.2.1 CASE1之分析結果•••••••••••••••41 4.2.2 CASE2之分析結果•••••••••••••••56 4.2.3 CASE3之分析結果•••••••••••••••61 第五章 結論與建議•••••••••••••••••••••69 5.1 結論 ••••••••••••••••••••••••69 5.2 建議 ••••••••••••••••••••••••70 參考文獻••••••••••••••••••••••••••72 附錄••••••••••••••••••••••••••••74 附錄A ABAQUS Input File CASE1•••••••••••••••75 附錄B ABAQUS Input File CASE2•••••••••••••••77 附錄C ABAQUS Input File CASE3•••••••••••••••80

    [1] ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACI committee, 2002), American Concrete Institute, Detroit, Michigan, 2002.

    [2] ASCE Task Committee on Concrete and Masonry Structure, State of the Art Report on Finite Element Analysis of Reinforced Concrete, ASCE, New York, 1982.

    [3] Chen, W. F., Plasticity in Reinforced Concrtet,McGraw-Hill, New York, 1982.

    [4] Elias, Hani E. and Durrani, A. J., “Confinement of Prestressed Concrete Columns,” PCI Journal, pp. 122-139, 1988

    [5] Hilleborg, Modeer, A., M. and Petersson, P. E., ”Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Element,” Cement and Concrete Research, Vol. 6, 1976, pp. 773-782.

    [6] Lin, T.Y., ”Strength of Continuous Prestressed Concrete Beams Under Static and Repeated Loads ,” ACI Journal , No. 10, 1955

    [7] Maekawa, K. and Okamura, H., “The Deformational Behavior and Constitutive Equation of Concrete Using the Elasto-Plastic and Fracture MOdel,” Journal of the Faculty of Engineering, The University of Tokyo, Vol XXXVII, No. 2, 1983, pp. 253-328.

    [8] Naaman, Antoine E. ,”Prestressed Concrete Analysis and Design,” McGraw-Hill Book Company

    [9] Nawy, Edward G., ”Prestressed Concrete A Fundamental Approach,” Prentice Hall,1989

    [10] Nelissen, L. J. M., “Biaxial Testing of Normal Concrete,” Heron, Delft, the Netherlands, Vol. 18, No. 1, 1972, pp. 1-90.

    [11] Nilson, A. H. , Design of Prestressed Concrete, John Wiley & Sons, New York, 1987.

    [12] Nilson, A. H., George Winter, Design of Concrete Structures, McGraw-Hill, New York, 1991.

    [13] Park ,R. and Paulay, T., “Reinforced Concrete Structures,” ,John Wiley & Sons, 1975

    [14] Roca, P. and Mari, A. R., “Nonlinear geometric and material analysis of prestressed concrete general shell structure,” Computers & Structures, Vol. 46, No. 5, pp. 917-929, 1993

    [15] Rabczuk ,T. and Eibl ,J., “Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach,” International Journal of Solid and Structures, Vol. 41, pp. 1061-1080, 2004

    [16] Rabczuk ,T. , Akkermann , J. and Eibl , J., “A numerical model for reinforced concrete structures,” International Journal of Solid and Structures, Vol. 42, pp. 1327-1354, 2005

    [17] Saenz, L. P., Discussion of “Equation for the Stress-Strain Curve of Cncrtet,” by Desayi, P. and Krishnan, S., ACI Journal, Proceedings, Vol. 61, No. 9., September 1964, pp. 1229-1235.

    [18] 林育弘,”壓水式核能電廠預力鋼筋混凝土圍阻體極限耐壓能力分析”,國立成功大學土木工程學系,碩士論文,中華名國八十四年六月。

    下載圖示 校內:立即公開
    校外:2005-07-13公開
    QR CODE