| 研究生: |
藍家斌 Lan, Jia-Bin |
|---|---|
| 論文名稱: |
節能玻璃於密室中之數值及實驗分析 Numerical and Experimental Analyses in a Enclosure with a Energy-Saving Glass |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 節能玻璃 、計算流體力學商業軟體 、逆向演算法 、太陽入射熱通量 |
| 外文關鍵詞: | energy-saving glass, Computational Fluid Dynamics Business Software, inverse algorithm, incident solar radiation |
| 相關次數: | 點閱:132 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文擬以解析反算法及計算流體力學商業軟體探討節能玻璃對於密式空間之暫態及穩態溫度分佈及熱傳特性的影響。本研究先以解析反算法配合節能玻璃上之溫度量測值來估算該玻璃之消光係數(Extinction coefficient)。為了欲預測進入節能玻璃之熱通量及熱傳係數,故於該玻璃之冷面(Cold surface)的紐塞爾數(Nusselt number)及雷萊數(Rayleigh number)關係式,將假設為已知。本解析反算法之優點是不需任何疊代過程及初始猜測值。除此之外,本文亦將應用計算流體力學商業軟體配合節能玻璃之冷面的實驗量測溫度來求得密閉式空間內之流場及溫度分佈情形。為了欲驗証本文結果之正確性,於冷面之平均熱傳係數的反算結果將與計算流體力學商業軟體所求得之數值結果相比較。此外,以節能玻璃之實驗分析密閉空間內,如具有開孔及抽風下,針對最佳位置與大小等熱場與流場作討論模擬結果之對照並比較流場之變化。
This article is intended to be anti-analytic algorithms and computational fluid dynamics commercial software to explore the impact of energy-saving glass for the dense space of transient and steady-state temperature distribution and heat transfer characteristics. In this study, we resolve anti-algorithm with energy-saving glass temperature measurements to estimate the extinction coefficient of the glass in order to forecast into the heat flux and heat transfer coefficient of the energy-saving glass first, it will be assumed to be known the Nusselt number and the Rayleigh number relation of cold surface in the glass. The advantages of this inverse algorithm do not need any iterative process and the initial guess. In addition, this article will be applied to computational fluid dynamics commercial software with the experimental measurement of the energy-saving glass of cold temperature to obtain the flow field and temperature distribution in a closed space. To verify the results of this paper the correctness of the average heat transfer coefficient in the cold of the inverse results will be compared to the numerical results and computational fluid dynamics commercial software we have obtained. In addition to the experimental analysis of energy-saving glass in a confined space, such as openings and ventilation for the best location and size of the thermal field and flow field for discussion of the control of the simulation results and compare the flow field changes.
[1] K.A.R. Ismail, J.R. Henrı´quez, Modeling and simulation of a simple glass window, Solar Energy Materials & Solar Cells, Vol. 80, pp. 355–374 , 2003.
[2] K.A.R. Ismail, J.R. Henrı´quez, Two-dimensional model for the double glass naturally ventilated window, Int. J. Heat Mass Transfer, Vol. 48, pp. 461–475 , 2005.
[3] K.A.R. Ismail, J.R. Henrı´quez, Simplified model for a ventilated glass window under forced air flow conditions, Appl. Thermal Eng., Vol. 26, pp. 295–302 , 2006.
[4] K.A.R. Ismail, J.R. Henrı´quez, U-values, optical and thermal coefficients of composite glass systems, Solar Energy Materials& Solar Cells, Vol. 52, pp. 155–182 , 1998.
[5] J. Xamán, J. Arcea, G. Álvarez, Y. Chávez, Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall, International Journal of Thermal Sciences, Vol. 47, pp. 1630–1638 , 2008.
[6] G. Alvarez, M.J. Palacios, J.J. Flores, A test method to evaluate the thermal performance of window glazings, Vol. 20, pp. 803–812 , 2000.
[7] C.A. Estrada, G. Alvarez, P.K. Nairt, Theoretical analysis of the thermal performance of chemically deposited solar control coatings, Appl. Phys., Vol. 26, pp. 1304-1309 , 1993.
[8] G. Alvarez, D.N. Jim´enezy, C.A. Estrada, Thermal performance of solar control coatings: a mathematical model and its experimental verification, Appl. Phys, Vol. 31, pp. 2249-2257 , 1998.
[9] G. Alvarezy, C.A. Estradaz, Transient heat conduction in a glass with chemically deposited SnS-CuxS solar control coating, Renewable Energy, Vol. 6, pp.1023-1027, 1995.
[10] A.M. Osman, J.V. Beck, Investigation of transient heat transfer coefficients in quenching experiments, Journal of Heat Transfer, Vol. 112, pp. 843-848, 1990.
[11] S. Chantasiriwan, Inverse heat conduction problem of determining time-dependent heat transfer coefficient, Int. J. Heat Mass Transfer, Vol. 42, pp. 4275-4285, 2000.
[12] T.J. Martin, G.S. Dulikravich, Inverse determination of steady heat convection coefficient distributions, Transactions of the ASME, J. Heat Transfer, Vol. 120, pp. 328-334, 1998.
[13] P.L. Masson, T. Loulou, E. Artioukhine, Estimation of a 2-D convection heat transfer coefficient during a test: comparison between two methods and experimental validation. Inverse Problems in Sci. and Eng., Vol. 12, pp. 595-617, 2004.
[14] D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York, 1993.
[15] P. Duda, J. Taler, Numerical method for the solution of non-linear two-dimensional inverse heat conduction problem using unstructured meshes. Int. Journal for Numerical Methods in Engineering, Vol. 48, pp.881-899, 2000.
[16] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
[17] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 45, pp. 15-23, 2002.
[18] H.T. Chen, X.Y. Wu, Estimation of heat transfer coefficient in two-dimensional heat conduction problems. Numerical Heat Transfer B Vol. 50, pp. 375-394, 2006.
[19] H.T. Chen, X.Y. Wu, Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme. Int. J. Numerical Methods in Engineering, Vol. 73, pp. 107-122, 2008.
[20] A. Trombe, A. Suleiman, Y. Le Maoult, Use of an inverse method to determine natural convection heat transfer coefficients in unsteady state, ASME, Vol. 125, pp. 1017-1026, 2003.
[21] H.T. Chen, S.K. Lee, Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film, Build Environ, Vol. 45, pp. 2089-2099, 2010.
[19] H.T. Chen, J.Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problems, Int. J. Heat Mass Transfer, Vol. 34, pp. 1301-1308, 1991.
[20] H.T. Chen, J.Y. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer, Vol. 36, pp. 2891-2898, 1993.
[21] H.T. Chen, J.Y. Lin, Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer, Vol. 37, pp. 153-164, 1994.
[22] H.T. Chen, S.M. Chang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 33, pp. 621-628, 1990.
[23] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
[24] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 45, pp. 15-23, 2002.
[25] H.T. Chen, X.Y. Wu, Y.S. Hsiao, Estimation of surface condition from the theory of dynamic thermal stresses, Int. J. Thermal Sciences, Vol. 43, pp. 95-104, 2004.
[26] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comp. Appl. Math., Vol. 9, pp. 113-132, 1984.
[27] Frank P. Incropera, David P. DeWitt, Fundamentals of Heat and Mass Transfer, 6-th Edition, John Wiley & Sons, New York. ,2008.
[28] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, UK, 1995.
[29] Fluent Dynamics Software, FLUENT, Lehanon, NH, 2010.
[30] Frank Kreith, Mark S. Bohn, Principles of Heat Transfer, 6th ed., Brooks/Cole, Pacific Grove, CA, 2001, pp. 301-354.
[31] http://www.taiwanglass.com/userfiles/clear_01.pdf.