簡易檢索 / 詳目顯示

研究生: 黃柏璁
Huang, Bo-Tsung
論文名稱: 熱擴張纖核技術之改良及量測
Improvement and measurement in the technology of thermally expanded core
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 熱擴張纖核法全光纖雷射模態場不匹配氫氧火炬
外文關鍵詞: Thermally expanded core, all-fiber laser, Mode field mismatch, H2-O2 Torch
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目標為利用熱擴散纖核法改善模態場不匹配所導致能量大量損失,進而使穿透率大幅下滑的問題。文中所探討的模態場不匹配光纖為10/125-08 SCF與HI980,實驗中所使用的雷射源架構為全光纖式雷射,以改善傳統半導體雷射波長不穩定的問題,其中的增益介質為摻鐿光纖,雷射源後端會加入特殊的能量比例量測架構,來規避掉雷射源能量不穩定的問題。在尚未進行熱擴散纖核法改善前,本實驗架構之兩光纖穿透率大約落在50%左右。文中會先以傳統常見的光纖熔接機其內部追加放電加熱功能來進行熱擴散纖核實驗,也嘗試了反接式的追加放電加熱法,最終實驗結果兩者之平均最大穿透率可分別提升至83.00%與84.45%,且後者在實驗穩定度能獲得40%左右的提升。後續便嘗試以追加放電加熱法為基礎,加入氫氧火炬來達成混合式燒熔的手法,測試最佳結果為先經過4次Re-Arc及十分鐘的氫氧火炬燒熔後,最大穿透率能提升至97.60%,且平均只需約370秒便能達到90%以上的穿透率,但此手法也存在過長的Buffer time以及光纖容易因燒熔產生彎曲等問題,因此後續又分別加入高速以及慢速拉細兩種方式進行改良與比較。藉由高速拉細實驗得知拉細能良好的改善Buffer time的問題,使效率大幅提升,只需約177秒便能使穿透率達90%以上,但仍存在些微光纖彎曲的問題,而慢速拉細能使效率進一步提升,只需約160秒就能達到穿透率90%以上,且能完美解決光纖彎曲的問題。

    This thesis studies on the thermally expanded core technology to improve the transmission loss due to the mode field mismatch. We use the all-fiber laser to be our laser source for the TEC experiment, which can make a more stable laser wavelength than the laser diode. Then we set a special measurement structure, which uses the proportion of the power to measure the result. By this way, this measurement structure can avoid the unstable power from the laser source. In the experiment, first, we use the Re-Arc by the fusion splicer to do the TEC experiment. That can improve the transmission from 50.66% to 83.00%. We also try Re-Arc by swapping fiber to do so. This way can make the transmission up to 84.45%, and make the result more stable then Re-Arc. Then we try TEC by mixed Re-Arc and H2-O2 Torch. By this method, we can make the transmission over 90% easily, and only need about 370 seconds to make transmission up to 90%. But we found that this way will make the fibers bended, and have a buffer time problem to make the efficiency pretty low. So we join the high-speed pulling to improve these questions. After the high-speed pulling, the buffer time problem can be solved successfully. We only need about 177 seconds to make transmission up to 90% by this way. But we found that still makes the fibers bended after the high-speed pulling. So we try the low-speed pulling to improve this problem. After the low-speed pulling, we only need about 160 seconds to make the transmission up to 90%, and the bending problem will perfectly solved by the low-speed pulling.

    摘要 I ABSTRACT II 致謝 XV 目錄 XVI 圖目錄 XVIII 表目錄 XXI 符號表 XXII 第一章、緒論 1 1-1 前言 1 1-2 研究動機 3 第二章、原理 6 2-1 雷射原理 6 2-2 TEC實驗量測平台所使用之雷射源架構 8 2-3 TEC的特性與模擬 9 2-3-1 TEC對模態數量的影響 9 2-3-2 TEC之擴散方程式與模擬 11 第三章、TEC之追加放電加熱法 14 3-1 實驗設計 14 3-1-1 量測架構設置 15 3-1-2 光纖熔接機介紹與參數設定 19 3-2 TEC之追加放電加熱法實驗結果 21 3-3 反接式追加放電加熱法 23 3-4 小結 27 第四章、混合式燒熔法 29 4-1 介紹混合式燒熔法 29 4-2 混合式燒熔法實驗測試 32 4-3 混合式燒熔法實驗結果 37 第五章、拉細 42 5-1 拉細實驗概念 42 5-2 拉細速度實測 44 5-3 高速拉細 46 5-4 慢速拉細 53 第六章、總結 60 6-1 成果與討論 60 6-2 未來展望 63 參考文獻 65

    [1] C. J. Koester and E. Snitzer, "Amplification in a fiber laser," Applied optics, vol. 3, no. 10, pp. 1182-1186, (1964).
    [2] J. Stone and C. A. Burrus, "Neodymium‐doped silica lasers in end‐pumped fiber geometry," Applied Physics Letters, vol. 23, no. 7, pp. 388-389, (1973).
    [3] D. Gloge, "Weakly guiding fibers," Applied Optics, vol. 10, no. 10, pp. 2252-2258, (1971).
    [4] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. McCollum, "Double clad, offset core Nd fiber laser," in Optical fiber sensors, (1988), p. PD5: Optical Society of America.
    [5] S. Norman et al., "Latest development of high-power fiber lasers in SPI," in Fiber Lasers: Technology, Systems, and Applications, (2004), vol. 5335, pp. 229-238: International Society for Optics and Photonics.
    [6] J. P. Koplow, D. A. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Optics letters, vol. 25, no. 7, pp. 442-444, (2000).
    [7] Y. e. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Optics express, vol. 12, no. 25, pp. 6088-6092, (2004).
    [8] M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Optics Letters, vol. 23, no. 1, pp. 52-54, (1998).
    [9] C.-H. Liu et al., "Effectively single-mode chirally-coupled core fiber," in Advanced Solid-State Photonics, (2007), p. ME2: Optical Society of America.
    [10] F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, "26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality," Optics letters, vol. 37, no. 6, pp. 1073-1075, (2012).
    [11] J. Limpert et al., "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Optics Express, vol. 12, no. 7, pp. 1313-1319, (2004).
    [12] J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, "Mode evolution in long tapered fibers with high tapering ratio," Optics Express, vol. 20, no. 23, pp. 25461-25470, (2012).
    [13] X. Zhou, Z. Chen, H. Zhou, and J. Hou, "Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique," Applied optics, vol. 53, no. 22, pp. 5053-5057, (2014).
    [14] X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, "Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique," Optics & Laser Technology, vol. 47, pp. 72-75, (2013).
    [15] M. Faucher and Y. K. Lize, "Mode field adaptation for high power fiber lasers," in Conference on Lasers and Electro-Optics, (2007), p. CFI7: Optical Society of America.
    [16] L. C. Bobb, P. Shankar, and H. D. Krumboltz, "Bending effects in biconically tapered single-mode fibers," Journal of lightwave technology, vol. 8, no. 7, pp. 1084-1090, (1990).
    [17] M. McLandrich, "Core dopant profiles in weakly fused single-mode fibres," Electronics Letters, vol. 24, no. 1, pp. 8-10, (1988).
    [18] G. S. Kliros and P. C. Divari, "Coupling characteristics of laser diodes to high numerical aperture thermally expanded core fibers," Journal of Materials Science: Materials in Electronics, vol. 20, no. 1, pp. 59-62, (2009).
    [19] H. Chen, Y. Qiu, G. Li, H. Zhang, and Q. Chen, "Improving fiber to waveguide coupling efficiency by use of a highly germanium-doped thermally expanded core fiber," Optics & Laser Technology, vol. 44, no. 3, pp. 679-682, (2012).
    [20] Y. C. Lin and S. C. Lin, "Thermally expanded core fiber with high numerical aperture for laser‐diode coupling," Microwave and Optical Technology Letters, vol. 48, no. 5, pp. 979-981, (2006).
    [21] B. Wang and E. Mies, "Review of fabrication techniques for fused fiber components for fiber lasers," in Fiber Lasers VI: Technology, Systems, and Applications, (2009), vol. 7195, p. 71950A: International Society for Optics and Photonics.
    [22] M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, "Characteristics of thermally expanded core fiber," Journal of lightwave technology, vol. 14, no. 10, pp. 2209-2214, (1996).
    [23] 李坤, 薛竣文, 苏秉华, 东苗, 张韦, and 吕海娟, "光纤熔接机加热扩芯制作模场适配器的研究," (2016).
    [24] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Optics letters, vol. 28, no. 20, pp. 1879-1881, (2003).
    [25] K. Shiraishi, T. Yanagi, and S. Kawakami, "Light-propagation characteristics in thermally diffused expanded core fibers," Journal of lightwave technology, vol. 11, no. 10, pp. 1584-1591, (1993).
    [26] K. Shiraishi, Y. Aizawa, and S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," Journal of lightwave technology, vol. 8, no. 8, pp. 1151-1161, (1990).

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE