簡易檢索 / 詳目顯示

研究生: 程有軒
Cheng, You-Xuan
論文名稱: 兩處環境水體中含硫臭味物質調查及臭氧奈米氣泡處理效果評估
Investigation of Sulfuric Odorous Compounds in Two Environmental Water Bodies and Evaluation of Ozone Nanobubble Treatment Efficiency
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 149
中文關鍵詞: 嗅覺層次分析法氣相層析質譜儀固相微萃取法氣相層析火焰光度檢測器含硫揮發性有機化合物臭氧處理奈米氣泡
外文關鍵詞: Flavor profile analysis(FPA), Gas chromatography/mass spectrometry(GC/MS), Gas chromatography/flame photometric detector(GC/FPD), Volatile organic sulfur compounds(VOSCs), Ozone-nanobubble system
相關次數: 點閱:23下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究調查台灣兩處水體,代表休憩水體的台南運河、及飲水水源的鳥嘴潭人工湖,含硫臭味物質發生情形,並應用臭氧結合奈米氣泡技術,評估對代表性臭味物質之處理可行性。研究中結合感官評估與化學分析技術,分析內容包括使用嗅覺層次分析法(Flavor Profile Analysis, FPA)評估氣味特徵,氣相層析質譜儀(Gas chromatography/mass spectroscopy, GC/MS)結合固相微萃取(Solid phase microextraction, SPME)與氣相層析火焰光度檢測器(Gas chromatography/flame photometric detector, GC/FPD)作為化學分析方法,進行含硫臭味物質之定性及定量,並與各項水質參數進行比較。
    現場調查結果顯示,臺南運河中各測站普遍檢出甲硫醇(methyl mercaptan, MeSH)、二甲基硫(Dimethyl sulfide, DMS)等含硫揮發性有機化合物(Volatile organic sulfur compounds, VOSCs),此類化合物皆具有明顯之氣味特徵,其中MeSH常被描述為腐爛蔬菜或沼澤氣味,DMS則呈現甜玉米或海洋氣味。綜合感官與化學分析結果,MeSH被認為是造成臺南運河臭味問題的主要貢獻物質之一。然而,鳥嘴潭人工湖之臭味問題則未顯示與此類含硫物質有顯著關聯。
    本研究亦設計氧化實驗,評估臭氧結合奈米氣泡(Nanobubble)技術對MeSH去除之可行性。結果顯示,該系統對於水中MeSH具有良好之降解效果,無論在濃度或氣味強度皆呈現下降趨勢。然而,其處理效率可能受限於水體中之天然有機物及金屬離子等因子干擾。未來建議針對各項潛在影響因子進行探討,以利實場應用與系統優化。

    This study integrates sensory evaluation and chemical analysis techniques to investigate odor issues in two representative water bodies: the Tainan Canal and the Niaozueitan Artificial Lake. Odor characteristics were assessed using Flavor Profile Analysis (FPA), while chemical analysis involved gas chromatography/mass spectrometry (GC/MS) with solid phase microextraction (SPME) and gas chromatography/flame photometric detection (GC/FPD) to identify and quantify sulfuric odorous compounds.
    Field investigations revealed that methyl mercaptan (MeSH) and dimethyl sulfide (DMS), both volatile organic sulfur compounds (VOSCs), were frequently detected in the Tainan Canal. MeSH is typically described as rotten vegetables or marsh-like, while DMS has a sweet corn or marine odor. Both sensory and chemical results indicated that MeSH is a major contributor to odor in the canal. In contrast, sulfur compounds were not identified as the main odor sources in the Niaozueitan Lake.
    Batch oxidation experiments were conducted to evaluate the use of ozone (O₃) combined with nanobubble technology for MeSH removal. The system effectively reduced MeSH concentration and odor intensity. However, treatment efficiency may be affected by natural organic matter (NOM) and metal ions. Further studies are recommended to explore these factors for future field applications.

    摘要 i Extended Abstract iii 致謝 vi 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 水中常見臭味物質 3 2-1-1 含硫臭味物質 6 2-1-2 含氮臭味物質 11 2-2 臭味物質處理方式 13 2-2-1 活性碳吸附 13 2-2-2 化學氧化技術 14 2-2-3 生物處理技術 18 2-2-4 高級氧化技術(Advanced oxidation processes, AOPs) 19 2-3 臭味物質化學分析法 24 2-3-1 固相微萃取法(Solid-phase microextraction, SPME) 25 2-3-2 氣相層析質譜儀(Gas chromatography with mass spectrometry, 26 2-3-3 氣相層析-火焰光度偵測器(Gas Chromatography with Flame Photometric Detector, GC-FPD) 27 2-4 臭味物質官能評價法 28 2-4-1 初嗅數法(Threshold Odor Number, TON) 29 2-4-2 嗅覺層次分析法(Flavor Profile Analysis, FPA) 29 2-4-3 強制選擇嗅覺閾值分析法(Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series Method of Limits, FCM) 32 2-4-4 其他官能評價法 32 2-5 研究場址 34 2-5-1 臺南運河 34 2-5-2 鳥嘴潭人工湖 35 2-6 其他地區水體中含有VOSCs之案例 36 2-6-1 太湖,中國無錫 36 2-6-2 南極洲韋斯特福爾山脈(Vestfold Hills),有機湖(Organic Lake) 36 2-6-3 白塔堡河,中國瀋陽 37 2-6-4 林斯利池塘(Linsley Pond),美國康乃狄克州 37 第三章 實驗設備與方法 38 3-1 實驗架構流程 38 3-2 研究場址水樣採集 40 3-2-1 採樣及保存方法 40 3-2-2 水質分析方法 41 3-3 臭味物質化學分析方法 42 3-3-1 GC-MS分析方法 42 3-3-2 GC-FPD分析方法 45 3-4 臭味物質官能評價法:強制選擇嗅覺閾值分析法 46 3-5 臭味物質官能評價法:初嗅數法 47 3-6 臭味物質官能評價法:嗅覺層次分析法 48 3-7 臭氧氧化還原競爭實驗 50 3-8 4-氯-2-甲氧基苯酚定量 54 3-9 氫氧自由基定量方法(Rhodamine B, RhB) 55 3-10 臭氧半批次實驗 57 3-11 臭氧濃度測定 59 第四章 結果與討論 60 4-1 嗅覺閾值及超微氣泡產生器測試 60 4-1-1 嗅覺閾值測定 60 4-1-2 GC/MS方法建立 64 4-1-3 超微氣泡產生器之特性評估 68 4-2 環境樣品分析 86 4-2-1 臺南運河 86 4-2-2 鳥嘴潭人工湖 103 4-2-3 小結 114 4-3 臭氧奈米氣泡對MeSH之氧化反應動力與去除效能 115 4-3-1 臭氧與MeSH之氧化反應動力常數探討 115 4-3-2 其他化合物與臭氧之反應動力比較 117 4-3-3 MeSH去除成效探討 119 第五章 結論與建議 126 5-1 結論 126 5-2 建議 127 參考文獻 128

    Ahmed, Mohammad Boshir, Zhou, John L, Ngo, Huu Hao, Guo, Wenshan, Thomaidis, Nikolaos S, & Xu, Jiang. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of Hazardous Materials, 323, 274-298.
    Ahn, Youngho, & Logan, Bruce E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource technology, 101(2), 469-475.
    Al-Raei, Abdul M, Bosselmann, Katja, Böttcher, Michael E, Hespenheide, Britta, & Tauber, Franz. (2009). Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dynamics, 59, 351-370.
    Alder, Lutz, Greulich, Kerstin, Kempe, Günther, & Vieth, Bärbel. (2006). Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass spectrometry reviews, 25(6), 838-865.
    Alvares, ABC, Diaper, C, & Parsons, SA. (2001). Partial oxidation by ozone to remove recalcitrance from wastewaters-a review. Environmental Technology, 22(4), 409-427.
    Andreae, Meinrat O. (1986). The ocean as a source of atmospheric sulfur compounds. In The role of air-sea exchange in geochemical cycling (pp. 331-362). Springer.
    Antonopoulou, Maria, Evgenidou, Eleni, Lambropoulou, D, & Konstantinou, I. (2014). A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water research, 53, 215-234.
    Arthur, Catherine L, & Pawliszyn, Janusz. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry, 62(19), 2145-2148.
    Bartels, Jeroen HM, Brady, Brian M, & Suffet, I. H. (1989). Tasta and Odor in Drinking Water Supplies : Combined Final Report.
    Basheer, C., & Lee, H. K. (2004). Sorptive extraction techniques in analytical chemistry. Journal of Chromatography A, 1027(1-2), 239-248.
    Benanou, D, Acobas, F, & De Roubin, MR. (2004). Optimization of stir bar sorptive extraction applied to the determination of odorous compounds in drinking water. Water science and technology, 49(9), 161-170.
    Benitez, F Javier, Beltrán-Heredia, Jesus, Acero, Juan L, & Rubio, F Javier. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of Hazardous Materials, 79(3), 271-285.
    Bernard, Joël, Nicodemo, T, Barthakur, NN, & Blais, JS. (1994). Design and characterization of a thermochemical high-performance liquid chromatography flame photometric detector interface for the speciation of sulfur. Analyst, 119(7), 1475-1481.
    Bhatia, A. Ozone for Improving Indoor Air Quality-Myths and Realities.
    Bolton, James R, Bircher, Keith G, Tumas, William, & Tolman, Chadwick A. (1996). Figures-of-merit for the technical development and application of advanced oxidation processes. Journal of advanced oxidation technologies, 1(1), 13-17.
    Boncz, Marc Á. (2002). Selective oxidation of organic compounds in waste water by ozone-based oxidation processes. Wageningen University and Research.
    Burlingame, GA. (2009). A practical framework using odor survey data to prioritize nuisance odors. Water science and technology, 59(3), 595-602.
    Burlingame, GA, Suffet, IH, Khiari, D, & Bruchet, AL. (2004). Development of an odor wheel classification scheme for wastewater. Water science and technology, 49(9), 201-209.
    Burlingame, Gary A, Doty, Richard L, & Dietrich, Andrea M. (2017). Humans as sensors to evaluate drinking water taste and odor: a review. Journal‐American Water Works Association, 109(11), 13-24.
    Chen, Yi-Ting, Chen, Wan-Ru, & Lin, Tsair-Fuh. (2018). Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. Water research, 142, 187-195.
    Christie, William W. (1998). Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids, 33(4), 343-353.
    DeMartino, Anthony W, Zigler, David F, Fukuto, Jon M, & Ford, Peter C. (2017). Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chemical Society Reviews, 46(1), 21-39.
    Demchuk, Eugene, Ball, Shannon L, Le, San L, & Prussia, Andrew J. (2018). Concentration-time extrapolation of short-term inhalation exposure levels: dimethyl sulfide, a case study using a chemical-specific toxic load exponent. Inhalation toxicology, 30(11-12), 448-462.
    Deng, Yang, & Zhao, Renzun. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current pollution reports, 1(3), 167-176.
    Derco, Jan, Kassai, Angelika, Melicher, Michal, & Dudas, Jozef. (2014). Removal of the 2‐Mercaptobenotiazole from Model Wastewater by Ozonation. The Scientific World Journal, 2014(1), 173010.
    Deslandes, Benoı̂t, Gariépy, Claude, & Houde, Alain. (2001). Review of microbiological and biochemical effects of skatole on animal production. Livestock Production Science, 71(2-3), 193-200.
    Dietrich, AM, Whelton, AJ, Hoehn, RC, Anderson, R, & Wille, M. (2004). The attribute rating test for sensory analysis. Water Science and Technology, 49(9), 61-67.
    Dietrich, Andrea M. (2009). The sense of smell: contributions of orthonasal and retronasal perception applied to metallic flavor of drinking water. Journal of Water Supply: Research and Technology—Aqua, 58(8), 562-570.
    Du, Hongxia, Wang, Zihan, Sun, Yongjun, & Shah, Kinjal J. (2024). An overview of the progress made in research on odor removal in water treatment plants. Water, 16(2), 280.
    Endo, Satoshi, Pfennigsdorff, Andrea, & Goss, Kai-Uwe. (2012). Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environmental science & technology, 46(3), 1496-1503.
    Farwell, SO, & Barinaga, CJ. (1986). Sulfur-selective detection with the FPD: Current enigmas, practical usage, and future directions. Journal of chromatographic science, 24(11), 483-494.
    Finster, Kai, King, Gary M, & Bak, Friedhelm. (1990). Formation of methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in anoxic marine and fresh water sediments. FEMS Microbiology Letters, 74(4), 295-301.
    Ginzburg, B, Chalifa, I, Gun, J, Dor, I, Hadas, O, & Lev, O. (1998). DMS formation by dimethylsulfoniopropionate route in freshwater. Environmental science & technology, 32(14), 2130-2136.
    Glaze, William H, Schep, Raymond, Chauncey, William, Ruth, Edward C, Zarnoch, Joseph J, Aieta, E Marco, Tate, Carol H, & McGuire, Michael J. (1990). Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. Journal‐American Water Works Association, 82(5), 79-84.
    Grandclément, Camille, Seyssiecq, Isabelle, Piram, Anne, Wong-Wah-Chung, Pascal, Vanot, Guillaume, Tiliacos, Nicolas, Roche, Nicolas, & Doumenq, Pierre. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water research, 111, 297-317.
    Guo, Qingyuan, Li, Xia, Yu, Jianwei, Zhang, Haifeng, Zhang, Yu, Yang, Min, Lu, Ning, & Zhang, Dong. (2015). Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the screening of potent swampy/septic odor-causing compounds in two drinking water sources in China. Analytical Methods, 7(6), 2458-2468.
    Hewage, Shaini Aluthgun, Kewalramani, Jitendra, & Meegoda, Jay N. (2021). Stability of nanobubbles in different salts solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125669.
    Hu, Haiying, Mylon, Steven E, & Benoit, Gaboury. (2006). Distribution of the thiols glutathione and 3‐mercaptopropionic acid in Connecticut lakes. Limnology and oceanography, 51(6), 2763-2774.
    Hu, Haiying, Mylon, Steven E, & Benoit, Gaboury. (2007). Volatile organic sulfur compounds in a stratified lake. Chemosphere, 67(5), 911-919.
    Huang, Qing, Qi, Juncheng, Zhou, Limin, Wang, Yao, Zhang, Wei-Xian, Hu, Jun, Tai, Renzhong, Wang, Shizhong, Liu, Airong, & Zhang, Lijuan. (2024). Hydrogen nanobubbles generated in situ from nanoscale zerovalent iron with water to further enhance selenite sequestration. Environmental science & technology, 58(9), 4357-4367.
    Huang, Xin, Lu, Qiang, Hao, Haotian, Wei, Qunshan, Shi, Baoyou, Yu, Jianwei, Wang, Chunmiao, & Wang, Yan. (2019). Evaluation of the treatability of various odor compounds by powdered activated carbon. Water research, 156, 414-424.
    Huber, Marc M, Canonica, Silvio, Park, Gun-Young, & Von Gunten, Urs. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental science & technology, 37(5), 1016-1024.
    Inchaurrondo, Natalia Soledad, & Font, Josep. (2022). Clay, zeolite and oxide minerals: natural catalytic materials for the ozonation of organic pollutants. Molecules, 27(7), 2151.
    Jaeger, Sara R, de Silva, H Nihal, & Lawless, Harry T. (2014). Detection thresholds of 10 odor‐active compounds naturally occurring in food using a replicated forced‐choice ascending method of limits. Journal of Sensory Studies, 29(1), 43-55.
    Jiang, Guangming, Melder, Denham, Keller, Jurg, & Yuan, Zhiguo. (2017). Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(17), 1581-1611.
    Jonsson, Sebastian. (2017). Method Development forQuantification of Total ReducedSulfur Compounds in Liquid Matrices. In.
    Jorge, Tiago F, Rodrigues, João A, Caldana, Camila, Schmidt, Romy, van Dongen, Joost T, Thomas‐Oates, Jane, & António, Carla. (2016). Mass spectrometry‐based plant metabolomics: Metabolite responses to abiotic stress. Mass spectrometry reviews, 35(5), 620-649.
    Kalontarov, Lev, Jing, Hongwu, Amirav, Aviv, & Cheskis, Sergey. (1995). Mechanism of sulfur emission quenching in flame photometric detectors. Journal of Chromatography A, 696(2), 245-256.
    Khaled Abdella Ahmed, Ahmed, Sun, Cuizhen, Hua, Likun, Zhang, Zhibin, Zhang, Yanhao, Marhaba, Taha, & Zhang, Wen. (2018). Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: Effects of ionic strength, natural organic matters, and surfactants. Environmental Engineering Science, 35(7), 720-727.
    Kiene, Ronald P, Malloy, Kirk D, & Taylor, Barrie F. (1990). Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Applied and environmental microbiology, 56(1), 156-161.
    Kim, Minsu, Lee, Jin-Hyung, Kim, Eonmi, Choi, Hyukjae, Kim, Younghoon, & Lee, Jintae. (2016). Isolation of indole utilizing bacteria Arthrobacter sp. and Alcaligenes sp. from livestock waste. Indian journal of microbiology, 56, 158-166.
    Knappe, Detlef, & Viswakumar, Anjali. (2011). Development of an Analytical Method for Taste and Odor Compounds Commonly Found in Drinking Water Sources.
    Koundle, Priya, Nirmalkar, Neelkanth, & Boczkaj, Grzegorz. (2025). High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading. Journal of Environmental Management, 374, 124107.
    Koundle, Priya, Nirmalkar, Neelkanth, Momotko, Malwina, & Boczkaj, Grzegorz. (2024). Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions. Water research, 263, 122148.
    Kwon, Minhwan, Kim, Seonbaek, Yoon, Yeojoon, Jung, Youmi, Hwang, Tae-Mun, & Kang, Joon-Wun. (2014). Prediction of the removal efficiency of pharmaceuticals by a rapid spectrophotometric method using Rhodamine B in the UV/H2O2 process. Chemical Engineering Journal, 236, 438-447.
    Langlais, Bruno, Reckhow, David A, & Brink, Deborah R. (1991). Ozone in water treatment. Application and engineering, 558.
    Leszczyński, Jacek. (2019). Color Removal from Groundwater by Coagulation and Oxidation Processes. Journal of Ecological Engineering, 20(9), 138-144.
    Lin, Tsair-Fuh, Watson, Susan, Dietrich, Andrea M., & Suffet, I. H. (2019). Taste and Odour in Source and Drinking Water: Causes, Controls, and Consequences. IWA Publishing. https://doi.org/10.2166/9781780406664
    Liu, Cheng, Li, J-L, Chen, Wei, & Wang, Man. (2012). Study on PAC Pretreatment of High-algae Source Water. China Water & Wastewater, 28(1), 52-55.
    Mackie, Roderick I, Stroot, Peter G, & Varel, Vincent H. (1998). Biochemical identification and biological origin of key odor components in livestock waste. Journal of Animal Science, 76(5), 1331-1342.
    McFarland, Mark L, & Provin, Tony L. (2024). Hydrogen Sulfide in Drinking Water, Causes and Treatment Alternatives.
    McGuire, Michael J. (1995). Off-flavor as the consumer's measure of drinking water safety. Water science and technology, 31(11), 1-8.
    Miklos, David B, Remy, Christian, Jekel, Martin, Linden, Karl G, Drewes, Jörg E, & Hübner, Uwe. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water research, 139, 118-131.
    Ming, Ting Teo, Hyun, Kim Tak, & Myun, JL. (2007). Characterization of livestock wastewater at various stages of wastewater treatment plant. Malays. J. Anal. Sci, 11, 23-28.
    Molekule. (2017). What Does Ozone Smell Like? https://molekule.com/blogs/all/what-does-ozone-smell-like
    Montazeri, Seyed Mohammad, Kalogerakis, Nicolas, & Kolliopoulos, Georgios. (2023). Effect of chemical species and temperature on the stability of air nanobubbles. Scientific Reports, 13(1), 16716.
    Ning, Rongsheng, Yu, Shuili, Li, Lei, Snyder, Shane A, Li, Pan, Liu, Yanan, Togbah, Charles, & Gao, Naiyun. (2024). Micro and nanobubbles-assisted advanced oxidation processes for water decontamination: The importance of interface reactions. Water research, 122295.
    Obeidat, Yusra. (2021). The most common methods for breath acetone concentration detection: a review. IEEE Sensors Journal, 21(13), 14540-14558.
    Pawliszyn, Janusz, Pawliszyn, Barbara, & Pawliszyn, Michael. (1997). Solid phase microextraction (SPME). The chemical educator, 2(4), 1-7.
    Rashash, Diana MC, & Foundation, AWWA Research. (1996). Identification and control of odorous algal metabolites. American Water Works Association.
    Rice, Eugene W, Bridgewater, Laura, & Association, American Public Health. (2012). Standard methods for the examination of water and wastewater (Vol. 10). American public health association Washington, DC.
    Roberts, NJ, Burton, HR, & Pitson, GA. (1993). Volatile organic compounds from Organic Lake, an Antarctic, hypersaline, meromictic lake. Antarctic science, 5(4), 361-366.
    Sakr, Marwa, Mohamed, Mohamed M, Maraqa, Munjed A, Hamouda, Mohamed A, Hassan, Ashraf Aly, Ali, Jafar, & Jung, Jinho. (2022). A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment. Alexandria Engineering Journal, 61(8), 6591-6612.
    Sander, Rolf. (2015). Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8), 4399-4981.
    Schwarzenbach, René P, Gschwend, Philip M, & Imboden, Dieter M. (2016). Environmental organic chemistry. John Wiley & Sons.
    Sela-Adler, Michal, Said-Ahmad, Ward, Sivan, Orit, Eckert, Werner, Kiene, Ronald P, & Amrani, Alon. (2015). Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lake. Environmental Chemistry, 13(2), 340-351.
    Shilei, Zhou, Yue, Sun, Tinglin, Huang, Ya, Cheng, Xiao, Yang, Zizhen, Zhou, Yang, Li, Zaixing, Li, Jiansheng, Cui, & Xiao, Luo. (2020). Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. Journal of Environmental Management, 267, 110456.
    Silva, Javier, Arias-Torres, Laura, Carlesi, Carlos, & Aroca, Germán. (2024). Use of nanobubbles to improve mass transfer in bioprocesses. Processes, 12(6), 1227.
    Singer, Philip C, & Reckhow, David A. (1999). Chemical oxidation. Water quality and treatment, 5, 12.11-12.46.
    Singh, Dhananjay, Singh, Deepak, Mishra, Vinay, Kushwaha, Jyoti, Sengar, Mukul, Sinha, Shishir, Singh, Sunita, & Giri, Balendu Shekher. (2024). Strategies for biological treatment of waste water: A critical review. Journal of Cleaner Production, 142266.
    Soyluoglu, Meryem, Kim, Daekyun, & Karanfil, Tanju. (2023). Characteristics and stability of ozone nanobubbles in freshwater conditions. Environmental science & technology, 57(51), 21898-21907.
    Soyluoglu, Meryem, Kim, Daekyun, Zaker, Yeakub, & Karanfil, Tanju. (2021). Stability of oxygen nanobubbles under freshwater conditions. Water research, 206, 117749.
    Soyluoglu, Meryem, Williams, Clinton F, & Karanfil, Tanju. (2025). Advancing water treatment: Ozone nanobubbles for geosmin and 2-methylisoborneol control. Chemical Engineering Journal, 513, 162892.
    Stefan, Mihaela I. (2017). Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications. IWA Publishing. https://doi.org/10.2166/9781780407197
    Stets, Edward G, Hines, Mark E, & Kiene, Ronald P. (2004). Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling. FEMS microbiology ecology, 47(1), 1-11.
    Suffet, IH, Burlingame, GA, Rosenfeld, PE, & Bruchet, A. (2004). The value of an odor-quality-wheel classification scheme for wastewater treatment plants. Water science and technology, 50(4), 25-32.
    Suffet, IH, Mallevialle, Joël, & Kawczynski, Elizabeth. (1995). Advances in taste-and-odor treatment and control. American Water Works Association.
    Suffet, IH, & Rosenfeld, P. (2007). The anatomy of odour wheels for odours of drinking water, wastewater, compost and the urban environment. Water science and technology, 55(5), 335-344.
    Suffet, Irwin H, Brenner, Lewis, & Cairo, Patrick R. (1980). GC/MS identification of trace organics in Philadelphia drinking waters during a 2-year period. Water research, 14(7), 853-867.
    Taylor, William, Losee, Richard F, Torobin, Marcia, Izaguirre, G, Sass, D, Khiari, D, & Atasi, K. (2006). Early warning and management of surface water taste-and-odor events.
    Teng, Yue, Yao, Ke, Song, Wenbin, Sun, Yongjun, Liu, Haoliang, Liu, Zhiying, & Xu, Yanhua. (2019). Preparation and characterization of Cu-Mn-Ce@ γ-Al2O3 to catalyze ozonation in coal chemical wastewater-biotreated effluent. International Journal of Environmental Research and Public Health, 16(8), 1439.
    Tu, Xiang, Chen, Shaohua, Wang, Siyu, Liao, Haiqing, & Deng, Xuejiao. (2020). Pollution status of volatile organic sulfur compounds causing odor in Xi River and factors influencing spatial distribution. Water Supply, 20(4), 1264-1270.
    Tunay, Olcay, & Kabdasli, Isik. (2010). Chemical oxidation applications for industrial wastewaters. Iwa publishing.
    Uchida, Tsutomu, Liu, Shu, Enari, Masatoshi, Oshita, Seiichi, Yamazaki, Kenji, & Gohara, Kazutoshi. (2016). Effect of NaCl on the lifetime of micro-and nanobubbles. Nanomaterials, 6(2), 31.
    United Nations. (2025). Sustainable Development Goal 6: Clean Water and Sanitation. https://www.sdg6data.org/zh-hans
    Von Gunten, Urs. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water research, 37(7), 1443-1467.
    Wang, Jiahe, Zhu, Hongbin, Wang, Cong, Zhang, Longji, Zhang, Rong, Jiang, Cancan, Wang, Lei, Tan, Yingyu, He, Yi, & Xu, Shengjun. (2024). Identification and distribution characteristics of odorous compounds in sediments of a shallow water reservoir. Water, 16(3), 455.
    Watson, Susan B. (2004). Aquatic taste and odor: a primary signal of drinking-water integrity. Journal of Toxicology and Environmental Health, Part A, 67(20-22), 1779-1795.
    Watson, Susan B, & Jüttner, Friedrich. (2017). Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters. Critical Reviews in Microbiology, 43(2), 210-237.
    WHO. (2003). Hydrogen sulfide in drinking-water: Background document for development of WHO guidelines for drinking-water quality (WHO/SDE/WSH/03.04/07).
    Wu, Ting, Wang, Xinming, Li, Dejun, & Yi, Zhigang. (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmospheric environment, 44(39), 5065-5071.
    Xiao, Wei, Zhang, He, Wang, Xiaohuan, Wang, Biao, Long, Tao, Deng, Sha, & Yang, Wei. (2022). Interaction mechanisms and application of ozone micro/nanobubbles and nanoparticles: a review and perspective. Nanomaterials, 12(12), 1958.
    Xie, Wen-Hui, Shiu, Wan-Ying, & Mackay, Donald. (1997). A review of the effect of salts on the solubility of organic compounds in seawater. Marine Environmental Research, 44(4), 429-444.
    Yang, Min, Yu, Jianwei, Li, Zonglai, Guo, Zhaohai, Burch, Michael, & Lin, Tsair-Fuh. (2008). Taihu Lake not to blame for Wuxi's woes. Science, 319(5860), 158-158.
    Yang, Xiaolong, Chen, Li, Oshita, Seiichi, Fan, Wenhong, & Liu, Shu. (2023). Mechanism for enhancing the ozonation process of micro-and nanobubbles: Bubble behavior and interface reaction. ACS ES&T Water, 3(12), 3835-3847.
    Young, Connie C, Suffet, IH Mel, Crozes, Gil, & Bruchet, August. (1999). Identification of a woody-hay odor-causing compound in a drinking water supply. Water science and technology, 40(6), 273-278.
    Zhang, Xiao-jian, Chen, Chao, Ding, Jian-qing, Hou, Aixin, Li, Yong, Niu, Zhang-bin, Su, Xiao-yan, Xu, Yan-juan, & Laws, Edward A. (2010). The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of Hazardous Materials, 182(1-3), 130-135.
    Zhang, You, Fan, Wenhong, Li, Xiaomin, Wang, Wen-Xiong, & Liu, Shu. (2022). Enhanced removal of free radicals by aqueous hydrogen nanobubbles and their role in oxidative stress. Environmental science & technology, 56(21), 15096-15107.
    Zhou, Yali, Han, Zhenyao, He, Chunlin, Feng, Qin, Wang, Kaituo, Wang, Youbin, Luo, Nengneng, Dodbiba, Gjergj, Wei, Yuezhou, & Otsuki, Akira. (2021). Long-term stability of different kinds of gas nanobubbles in deionized and salt water. Materials, 14(7), 1808.
    公視新聞網. (2020). 草屯鳥嘴潭人工湖旁 5萬噸垃圾緊鄰. https://news.pts.org.tw/article/478494
    何, 玉琦. (2004). 應用嗅覺與儀器方法分析水中臭味之研究 國立成功大學. 台南市.
    杨, 敏, & 于, 建伟. (2021). 饮用水嗅味问题:来源与控制. 北京:科学出版社.
    胡, 汪婷, & 李, 雨芮. (2018). 曝气技术对城市黑臭水体的影响研究进展. Water pollution and treatment, 6, 165.
    陳, 惟晟. (2024). 環境水中兩類常見臭味物質調查及臭氧處理效果分析 國立成功大學. 台南市.
    陳, 薏涵. (2010). 鹽水溪及二仁溪臭味特性研究-畜牧廢水及生活污水之影響 國立成功大學. 台南市.
    曾, 小磊, 蔡, 云龙, 陈, 国光, & 徐, 国勋. (2011). 臭味感官分析法在饮用水测定中的应用. 给水排水, 37(3), 14-18.
    楊, 敏, & 于, 建偉. (2021). 飲用水嗅味問題 : 來源與控制. 科學出版社.
    溫, 正衡. (2023). 台南安平運河整治30年仍飄臭 南市府:攔截汙水明年改善. 公視新聞網.
    經濟部水利署中區水資源分署鳥嘴潭人工湖計畫網站. (2024). 鳥嘴潭人工湖環境監測報告.
    臺南市政府. (2021). 【運河水環境改善計畫】整體計畫工作計畫書.
    劉, 洋, 陳, 旭, 陳, 耀偉, & 葉, 思瑤. (2013). 白塔堡河中致嗅類揮發性有機硫化物污染現狀及來源研究. 環境科學, 34(11), 4288-4295.
    潘, 芊伃. (2023). 台南運河中常見含硫臭味物質分析及光催化氧化處理之研究 國立成功大學. 台南市.
    蘇, 胤瑋. (2023). 紫外光及高級氧化程序對水中兩種常見Anabaenopeptin的降解研究 國立成功大學. 台南市.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE