簡易檢索 / 詳目顯示

研究生: 張家源
Chang, Chia-Yuan
論文名稱: 氧化銅/砷化鎵薄膜退火前後之奈米壓痕行為及微觀結構變化之研究
Nanoindentation Behaviour and Microstructure of CuO/GaAs Thin Film with and without Annealing
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化銅砷化鎵退火奈米壓痕差排
外文關鍵詞: Nanoindentation, GaAs, Microstructural evolution, Annealing, Thin films
相關次數: 點閱:92下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究討論氧化銅/砷化鎵薄膜系統奈米壓痕行為,以及退火前後機械性質、表面形貌和微觀結構之變化。本實驗利用射頻濺鍍機於砷化鎵基板上沉積200nm及300nm之氧化銅薄膜,分別對薄膜厚度200nm試片進行150nm和250nm深度之試驗,以及薄膜厚度300nm試片進行150nm和350nm深度之試驗,以了解壓痕深度與膜厚之影響。此外也對另一組試片進行500℃持溫30分鐘之加熱,同樣進行上述之量測,以比較退火前後之差異。
    實驗結果顯示,退火前之負載-深度曲線有pop-in之現象,經退火後硬度及楊氏模數皆下降,因此無因薄膜脫落基板而發生pop-in之現象。當壓痕深度皆為150nm時,發現膜厚300nm所量測之硬度與膜厚200nm相差有限,因此可發現薄膜厚度影響整體硬度有限。觀察試片表面形貌及剖面微觀結構可發現,壓痕深度越大表面之變形量與差排密度也越大,當壓痕深度皆為150nm時,膜厚較厚之試片殘留的塑性變形較為明顯,因而有較大之表面變形與差排密度。退火後表面變形與差排密度皆較小。

    The mechanical properties of CuO/GaAs thin films with and without annealing indented in room temperatures to different depth were examined by using a nanoindentation test. The specimens were annealed at the temperature 500℃ for 30 minutes. The result show that without annealing the pop-in effect appeared at the load-depth curve as the specimen indented at room temperature, due to the delamination of the thin film from the substrate. After annealing, the load-depth curve become smooth and the hardness and Young’s modulus were found to decrease. Furthermore, dislocations density were also found to decrease dramatically. The changes in microstructure and mechanical properties were also discussed in terms of annealing, indentation depth and thickness of the thin film were also discussed.

    總目錄 中文摘要 I Nanoindentation Behaviour and Microstructure of CuO/GaAs Thin Film with and without Annealing II 致謝 IX 總目錄 X 圖目錄 XIII 符號說明 XVIII 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 砷化鎵性質與應用理論介紹 3 2-1-1 太陽能電池 3 2-1-2 砷化鎵性質與應用理論介紹 3 2-1-3 砷化鎵與矽的性值比較 4 2-2 奈米壓痕理論 5 2-2-1 奈米壓痕數學模型 5 2-2-2 初始卸載勁度與接觸面積之量測 7 2-2-3 奈米壓痕數學模型的修正 8 2-3 影響薄膜測量之因素 9 2-3-1 表面粗糙效應(Surface roughness) 9 2-3-2 壓痕尺寸效應(Indentation size effect, ISE) 10 2-3-3 擠出和沉陷效應(Pile-up & sink-in effect) 10 2-3-4 基材效應(Substrate effect) 11 2-4 奈米壓痕試驗之實驗校正 11 2-4-1 五點定位校正 11 2-4-2 探針面積函數校正 11 2-4-3 熱漂移(thermal drift)校正 12 2-4-4 靜電力校正 12 2-4-5 機械撓性(mechanical flexibility)校正 12 第三章 實驗方法與步驟 16 3-1 實驗流程 16 3-2 實驗儀器與設備 16 3-2-1 射頻式濺鍍機(RF-Sputtering Deposition System) 17 3-2-2 電子束微影光罩製作系統(Electron beam lithography system, EBL) 17 3-2-3 雙面對準/UV光感奈米壓印機 18 3-2-4 奈米壓痕試驗機(Nano-Indentation System) 18 3-2-5 退火處理設備(Thermal annealing) 18 3-2-6 高階三束型聚焦離子束顯微鏡(Advanced triple focused ion beam, FIB) 18 3-2-7 高解析穿透式電子顯微鏡(High resolution transmission electron microscope, HR-TEM) 19 3-3 試片製備 20 3-3-1 濺鍍材料與試片製備 20 3-3-2 微影蝕刻製程 20 3-4 實驗方法與步驟 21 3-4-1 奈米壓痕試驗 21 3-4-2 對試片進行退火處理 22 3-4-3 微觀結構的觀察 22 第四章 實驗結果與討論 31 4-1 薄膜機械性質討論 31 4-1-1 負載曲線分析 31 4-1-2 硬度曲線分析 32 4-1-3 楊氏模數曲線分析 33 4-2 壓痕表面形貌討論 34 4-2-1 退火前後壓痕表面形貌分析 35 4-2-2 膜厚差異之壓痕表面形貌分析 35 4-2-3 壓痕深度差異之壓痕表面形貌分析 36 4-3 壓痕剖面微觀結構討論 36 4-3-1 退火前後壓痕剖面微觀結構分析 37 4-3-2 膜厚差異之壓痕剖面微觀結構分析 38 4-3-3 壓痕深度差異之剖面微觀結構分析 38 第五章 結論 63 參考文獻 65 圖目錄 圖2-1 壓痕載重-位移曲線圖[34] 13 圖2-2 探針壓痕示意圖[34] 13 圖2-3 奈米壓痕器示意圖[34] 14 圖2-4 表面粗糙度效應示意圖[34] 14 圖2-5 尺寸效應剖面示意圖[34] 15 圖2-6 擠出和沉陷效應示意圖[34] 15 圖3-1 實驗流程圖 23 圖3-2 RF-濺鍍機示意圖 24 圖3-3 奈米壓痕器示意圖[34] 24 圖3-4 退火爐管示意圖[34] 25 圖3-5 搜尋壓痕位置(Step 1) 25 圖3-6 調整電子束並使其在正面聚焦至壓痕表面(Step 2) 26 圖3-7 調整電子束並使其在52度掠角下聚焦至表面(Step3) 26 圖3-8 鍍上碳層以保護離子束切割區域(Step 4) 27 圖3-9 以離子束製備穿透式電子顯微鏡試片的薄區(Step 5) 27 圖3-10 以離子束切割穿透式電子顯微鏡試片的薄區(Step 6) 28 圖3-11 穿透式電子顯微鏡試片製備完成(Step 7) 28 圖3-12 電子束成像示意圖[34] 29 圖3-13 光罩特徵圖形尺寸說明 30 圖4-1 膜厚200nm壓痕深度150 nm (未退火處理) 之壓痕深度-負載曲線 40 圖4-2 膜厚200nm壓痕深度250 nm (未退火處理) 之壓痕深度-負載曲線 40 圖4-3 膜厚300nm壓痕深度150 nm (未退火處理) 之壓痕深度-負載曲線 41 圖4-4 膜厚300nm壓痕深度350 nm (未退火處理) 之壓痕深度-負載曲線 41 圖4-5 膜厚200nm壓痕深度150 nm (經退火處理) 之壓痕深度-負載曲線 42 圖4-6 膜厚200nm壓痕深度250 nm (經退火處理) 之壓痕深度-負載曲線 42 圖4-7 膜厚300nm壓痕深度150 nm (經退火處理) 之壓痕深度-負載曲線 43 圖4-8 膜厚300nm壓痕深度350 nm (經退火處理) 之壓痕深度-負載曲線 43 圖4-9 膜厚200nm壓痕深度150 nm (未退火處理) 壓痕深度與硬度曲線 44 圖4-10 膜厚200nm壓痕深度250 nm (未退火處理) 壓痕深度與硬度曲線 44 圖4-11 膜厚300nm壓痕深度150 nm (未退火處理) 壓痕深度與硬度曲線 45 圖4-12 膜厚300nm壓痕深度350 nm (未退火處理) 壓痕深度與硬度曲線 45 圖4-13 膜厚200nm壓痕深度150 nm (經退火處理) 壓痕深度與硬度曲線 46 圖4-14 膜厚200nm壓痕深度250 nm (經退火處理) 壓痕深度與硬度曲線 46 圖4-15 膜厚300nm壓痕深度150 nm (經退火處理) 壓痕深度與硬度曲線 47 圖4-16 膜厚300nm壓痕深度350 nm (經退火處理) 壓痕深度與硬度曲線 47 圖4-17 膜厚200nm壓痕深度150 nm (未退火處理) 壓痕深度與楊氏模數曲線 48 圖4-18 膜厚200nm壓痕深度250 nm (未退火處理) 壓痕深度與楊氏模數曲線 48 圖4-19 膜厚300nm壓痕深度150 nm (未退火處理) 壓痕深度與楊氏模數曲線 49 圖4-20 膜厚300nm壓痕深度350 nm (未退火處理) 壓痕深度與楊氏模數曲線 49 圖4-21 膜厚200nm壓痕深度150 nm (經退火處理) 壓痕深度與楊氏模數曲線 50 圖4-22 膜厚200nm壓痕深度250 nm (經退火處理) 壓痕深度與楊氏模數曲線 50 圖4-23 膜厚300nm壓痕深度150 nm (經退火處理) 壓痕深度與楊氏模數曲線 51 圖4-24 膜厚300nm壓痕深度350 nm (經退火處理) 壓痕深度與楊氏模數曲線 51 圖4-25 膜厚200nm壓痕深度150 nm (未退火處理)壓痕表面形貌 52 圖4-26 膜厚200nm壓痕深度150 nm (經退火處理)壓痕表面形貌 52 圖4-27 膜厚200nm壓痕深度250 nm (未退火處理)壓痕表面形貌 53 圖4-28 膜厚200nm壓痕深度250 nm (經退火處理)壓痕表面形貌 53 圖4-29 膜厚300nm壓痕深度150 nm (未退火處理)壓痕表面形貌 54 圖4-30 膜厚300nm壓痕深度150 nm (經退火處理)壓痕表面形貌 54 圖4-31 膜厚300nm壓痕深度350 nm (未退火處理)壓痕表面形貌 55 圖4-32 膜厚300nm壓痕深度350 nm (經退火處理)壓痕表面形貌 55 圖4-33 氧化銅薄膜X光繞射圖 56 圖4-34 砷化鎵基材X光繞射圖 56 圖4-35 氧化銅薄膜區域之High-Resolution照射圖 57 圖4-36 砷化鎵基材區域之High-Resolution照射圖 57 圖4-37 膜厚200nm壓痕深度150nm(未退火處理)壓痕剖面微觀結構 58 圖4-38 膜厚200nm壓痕深度150nm(經退火處理)壓痕剖面微觀結構 58 圖4-39 膜厚200nm壓痕深度250nm(未退火處理)壓痕剖面微觀結構 59 圖4-40 膜厚200nm壓痕深度250nm(經退火處理)壓痕剖面微觀結構 59 圖4-41 膜厚300nm壓痕深度150nm(未退火處理)壓痕剖面微觀結構 60 圖4-42 膜厚300nm壓痕深度150nm(經退火處理)壓痕剖面微觀結構 60 圖4-43 膜厚300nm壓痕深度350nm(未退火處理)壓痕剖面微觀結構 61 圖4-44 膜厚300nm壓痕深度350nm(經退火處理)壓痕剖面微觀結構 61 圖4-45 膜與基材脫落示意圖 62  

    [1]A. G. Aberle, "Thin-film solar cells," Thin solid films, vol. 517, no. 17, pp. 4706-4710, 2009.
    [2]X. Chen and J. J. Vlassaka, “Numerical study on the measurement of thin film mechanical properties by means of nanoindentation”, J. Mater Res Vol. 16 No. 10, (2001) 2974-2982.
    [3]J. G. Swadener, E. P. Georgea, and G. M. Pharra, "The correlation of the indentation size effect measured with indenters of various shapes," Journal of the Mechanics and Physics of Solids, vol. 50, pp. 681-694, 2002.
    [4]G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering, vol. A253, pp. 151-159, 1998.
    [5]S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov and A. P. Ternovskii,“Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression”, Strength of Materials Vol. 8 No.9 (1976)1084-1089.
    [6]曹乃弘, “控制氧化銅薄膜之氧化態並改善電洞傳導應用於反式高分子有機太陽能電池” ,2013.
    [7]Yatendra S. Chaudhary, Anshul Agrawala, Rohit Shrivastav, Vibha R. Satsangi, Sahab Dass, “A study on the photoelectrochemical properties of copperoxide thin films”, International Journal of Hydrogen Energy 29 (2004) 131 – 134.
    [8]Int. J. Electrochem, “Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition”, Sci., 6 (2011) 6094 – 6104.
    [9]J. Britt, and C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% efficiency”, Appl. Phys. Lett. 62, 2851 (1993).
    [10]Xuanzhi Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy 77 (2004) 803–814.
    [11]M. Kaelin *, D. Rudmann, A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy 77 (2004) 749–756.
    [12]T. Nakamura, "Mars Rover power system for solar and laser beam Utilization, " Concepts and Approaches for Mars Exploration, 2012.
    [13]B. L and B. Roberto, "The scaling challenges of CMOS and the impact on high-density non-volatile memories," Microsystem Technologies, vol. 13, no. 2, pp. 133-138, 2006.
    [14]R. Ludeke and G. Landgren, "Electronic properties and chemistry of Ti/GaAs and Pd/GaAs interfaces," Physical Review B, vol. 33, no. 8, pp.5526-5535,1986.
    [15] S. Ashok and J. M. Borrego, "Electrical characteristics of GaAs MIS Schottky diodes, " Solid-State Electronics, vol. 22, pp. 621-631, 1979.
    [16] C. Anthony and C. Fischer, "Nanoindentation," 2nd ed. Springer, N. Y.,2004.
    [17]S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2nd ed. McGraw-Hill, N. Y., 1951.
    [18] D. Lorenz, A. Zeckzer, U. Hilpert, and P. Gra, "Pop-in effect as homogeneous nucleation of dislocations during nanoindentation," PHYSICAL REVIEW B 67, 172101 ~2003.
    [19] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7 No.3, 1992.
    [20]W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19 No. 1 (2004) 3-20.
    [21]M. Martin and M. Troyon," Fundamental relations used in nanoindentation: Critical examination based on experimental measurements," Journal of Materials Research, vol.17,no.9, pp. 2227-2234, 2002.
    [22]W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1992.
    [23]M. Hansen and K. Anderko, “Constitution of Binary Alloys,” 2nd ed.McGraw-Hill, N. Y. (1958) 51.
    [24] R. B. King, " Elastic analysis of some punch problems for a layered medium, " International Journal of Solids and Structures, vol 23, no. 12, pp1657-1664, 1987.
    [25]K.-D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, and G. Erkens, "The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation," Materials characterization, vol. 49, no. 2, pp. 149-156, 2002.
    [26]M. Bobji and S. Biswas, "Deconvolution of hardness from data obtained from nanoindentation of rough surfaces," Journal of materials research, vol. 14, no. 6, pp. 2259-2268, 1999.
    [27]M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, "Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate," Surface and Coatings Technology, vol. 200, no. 14-15, pp. 4185-4194, 2006.
    [28]I. Manika and J. Maniks, "Size effects in micro- and nanoscale indentation," Acta Materialia, vol. 54, pp. 2049-2056, 2006.
    [29]A. Bolshakov and G. Pharr, "Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques," Journal of materials research, vol. 13, no. 4, pp. 1049-1058, 1998.
    [30]K. MIYAKE, S. FUJISAWA, and A. KORENAGA, "The Effect of Pile- Up and Contact Area on Hardness Test by Nanoindentation," Japanese Journal of Applied Physics, vol. 43, no. 4602-4605, 2004.
    [31] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta materialia, vol. 50, no. 1, pp. 23-38, 2002.
    [32]D. Kramer, A. Volinsky, N. Moody, and W. Gerberich, "Substrate effects on indentation plastic zone development in thin soft films," Journal of Materials Research, vol. 16, no. 11, pp. 3150-3157, 2001.
    [33]B. Bokhonov and M. Korchagin, "In situ investigation of stage of the formation of eutectic alloys in Si–Au," Journal of Alloys and Compounds, vol. 312, pp. 238-250, 2000.
    [34]Y.-L. Chuang, "Effect of annealing temperature on nanoindented microstructure of CuSi thin films," 2009.
    [35]X. Li and B. Bhushan, "A review of nanoindentation continuous stiffness measurement technique and its applications," Materials characterization, vol. 48, no. 1, pp. 11-36, 2002.
    [36]A. J. Haq, P. Munroe, M. Hoffman, P. Martin, and A. Bendavid, "Deformation behaviour of DLC coatings on (111) silicon substrates," Thin Solid Films, vol. 516, no. 2-4, pp. 267-271, 2007.
    [37]K. Wasmer, R. Gassilloud, J. Michler, and C. Ballif, "Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP, " Journal of Materials Research, vol. 27, no. 01, pp. 320-329, 2011.
    [38]S. J. Bull," Nanoindentation of coatings, "Applied Physics, vol.38, no.24, pp.394-395, 2005.
    [39]K. Durst, B. Backes, and M. Göken, "Indentation size effect in metallic materials: Correcting for the size of the plastic zone, " Scripta Materialia, vol. 52, no. 11, pp. 1093-1097, 2005.
    [40]Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, "Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness, "Materials Science and Engineering: A, vol. 427, no. 1-2, pp. 232-240, 2006.
    [41] E. P. S. Tan, Y. Zhu,T. Yu, L. Dai, C. H. Sow, V. B. C. Tan and C. T. Lim, "Crystallinity and surface effects on Young’s modulus of CuO nanowires",APPLIED PHYSICS LETTERS 90, 163112 (2007).
    [42]K. K. Bum, "Interfacial reactions in the Ti/GaAs system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 3, p. 1473, 1988.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE