簡易檢索 / 詳目顯示

研究生: 林欣螢
Lin, Xin-Ying
論文名稱: 利用卡曼濾波器實現一個適用於異質網路環境下之可適性多媒體串流機制
An adaptive Multimedia Streaming Mechanism Using the Kalman Filter over the Heterogeneous Networks
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 50
中文關鍵詞: 頻寬估測卡曼濾波器FGS編碼動態緩衝區控制
外文關鍵詞: active buffer control, Bandwidth estimation, Kalman filter, FGS coding
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在時變的網路頻寬中,為了能動態地調整影像串流的品質,一個能感知網路的頻寬管理和位元率控制是必要的。此論文提出了一個針對多媒體FGS編碼影像串流完善設計的頻寬估測和動態緩衝區控制機制,並使之可以適應於有線、無線和3G的異質網路上。根據測量得到的封包來回時間、封包遺失率和延遲抖動等資訊,利用卡曼濾波器遞迴的估測可用頻寬,並考慮解碼器端緩衝區的空間大小決定適當的影像傳送速率。透過卡曼濾波器參數,例如轉移矩陣、錯誤共變數,初始化和最佳化,使之能收斂和適應於目前所在網路的特性。在我們的實驗中,以模擬不同的網路流量環境與pathChirp方法比較,同時也展示在實際網路環境中的相關網路資訊和實驗估測結果。

    In order to adapt the quality of a video stream over a time-varying bandwidth channel, network-aware bandwidth management and rate control scheme are required. This thesis proposes a well-designed bandwidth estimation and active buffer control scheme for streaming FGS videos over heterogeneous wired/wireless/3G networks.
    According to the measured information of packet round-trip-time, loss-rate and delay jitter, an improved Kalman filter is proposed to predict an available bandwidth recursively, and determine a proper transmission rate in consideration of buffer fullness of a decoder. The optimal parameters of the Kalman filter, e.g., a transition matrix and an error covariance, can be initialized, converged and adapted to characteristics of the current network. In our experiments, distinct network traffic models are simulated in comparison with pathChirp, and corresponding estimation results w.r.t. network information are also exhibited in the real network.

    1 Introduction                             1 2 Preliminary                             5   2.1 Introduction to Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5   2.2 Bandwidth estimation using the Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . 8   2.3 The well-known bandwidth estimation tool: pathChirp . . . . . . . . . . . . . . . . . 9   2.4 The schemes of scalable video coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3 The Proposed System Architecture Using U-BEKF             14 4 The Network-Aware Rate Adaptation Using Kalman Filter and Active Buffer Control                               17   4.1 The complete procedure of U-BEKF: network monitoring and bandwidth estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17   4.2 The optimization and update mechanisms of covariances Q and R . . . . . . . 20   4.3 Rate adaptation and active buffer control using U-BEKF . . . . . . . . . . . . . . 21 5 The Standard Handoff Procedures Over Mobile Networks          25   5.1 The procedures of AP handoff and handoff decisions . . . . . . . . . . . . . . . . . 25   5.2 Recovery of streaming session after AP handoff under NAT . . . . . . . . . . . 29 6 Experimental Results                        32   6.1 The parameters analyses of U-BEKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32   6.2 The comparisons with pathChirp and U-BEKF . . . . . . . . . . . . . . . . . . . . . 36   6.3 The comparisons of loss rate with/without U-BEKF . . . . . . . . . . . . . . . . . 39   6.4 The behavior of the proposed U-BEKF for session handoff . . . . . . . . . . . .41 7 Conclusion                            45

    [1] D. Longuinov and H. Radha, ”End-to-end rate-based congestion control: convergence properties and scalability analysis”, IEEE/ACM Transactions on Networking, VOL. 11, NO. 4, pp. 564-577, August 2003.

    [2] T. Phan, K. Xu, R. Guy and R. Bagrodia, ”Handoff of application sessions across time and space”, Proceedings of International Conference on Communications, VOL. 5, pp. 1367-1372, June 2001.

    [3] Y. Ling, W. Tian, J. Hong, Y. Guangxin, and Y. Changchuan, ”A Novel TCP over Wireless Fading Channel”, Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, VOL.4, pp. 2499-2503, September 2004.

    [4] C. Song, P.C. Cosman, and G.M. Voelker, ”End-to-end differentiation of congestion and wireless losses”, IEEE/ACM Transactions on Networking, VOL. 11, NO. 5, pp. 703-717, October 2003.

    [5] S. Biaz and N.H. Vaidya, ”Discriminating congestion losses from wireless losses using inter-arrival times at the receiver”, Proceedings of IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, pp. 10-17, March 1999.

    [6] H. Dang-Hai and D.Reschke, ”An adaptive control scheme for multimedia flows over wireless networks”, Proceedings of the 5th Biannual on World Automation Congress, VOL. 13, pp. 325-330, June 2002.

    [7] P. van Beek, S. Deshpande, H. Pan and I. Sezan, ”Adaptive streaming of high-quality video over wireless LANs”, Proceedings of SPIE on Visual Communications and Image Processing, pp. 647-660, 2004.

    [8] B. Melander, M. Bjorkman, and P. Gunningberg, ”A new end-to-end probing and analysis method for estimating bandwidth bottlenecks”, Proceedings of Global Telecommunications, pp. 415-421, November 2000.

    [9] M. Jain and C. Dovrolis, ”End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput”, IEEE/ACM Transactions on Networking, VOL. 11, NO. 4, pp. 537-549, August 2003.

    [10] N. Seung Yeob, K. Sunggon, K. Junsu, and D.K. Sung, ”Probing-based estimation of end-to-end available bandwidth”, IEEE Communications Letters, VOL. 8, NO. 6, pp. 400-402, June 2004.

    [11] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, ”TCP Westwood: Endto-End Congestion Control for Wired/Wireless Networks”, ACM Transactions on Wireless Networks, VOL.8, NO. 5, pp. 467-479, September 2002.

    [12] F. Martignon, A. Capone, ”TCP with bandwidth estimation over wireless networks”, Proceedings of IEEE Vehicular Technology, VOL.3, pp. 1422-1426, September 2002.

    [13] A. Capone, L. Fratta, and F. Martignon, ”Bandwidth Estimation Schemes for TCP over Wireless Networks”, IEEE Transactions on Mobile Computing, VOL.3, NO. 2, pp. 129-143, April-June 2004.

    [14] Z. Zhang and Z. Qiu, ”A novel approach for real-time equivalent bandwidth estimation”, Proceedings of International Conference on Communication Technology, VOL. 2, pp. 1470-1474, August 2000.

    [15] L. Qiang and H. Jenq-Neng, ”End-to-end available bandwidth estimation and time measurement adjustment for multimedia QOS,” Proceedings of IEEE International Conference on Multimedia and Expo, VOL. 3, pp. 373-376, July 2003.

    [16] Z. Dziong, M. Juda and L.G. Mason, ”A framework for bandwidth management in ATM networks-aggregate equivalent bandwidth estimation approach”, IEEE/ACM Transactions on Networking, VOL. 5, NO. 1, pp. 134-147, February 1997.

    [17] G. Razzano, H.T. Tran and C. Cantarella, ”17 GHz Wireless LAN: Performance Analysis of CAC Algorithms”, Proceedings of International Symposium on Computers and Communications, pp. 786-781, May 2005.

    [18] M. Kim and B. Noble, ”SANE: Stable Agile Network Estimation”, Technical Report CSE-TR-432-00, University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, MI, August 2000.

    [19] E. Hartikainen and S. Ekelin, ”Tuning the Temporal Characteristics of a Kalman-Filter Method for End-to-End Bandwidth Estimation”, Proceedings of IEEE/IFIP International Workshop on End-to-End Monitoring Techniques and Services, pp. 58-65, April 2006.

    [20] Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., ”pathChirp: Efficient Available Bandwidth Estimation for Network Paths,” In Passive and Active Measurement Workshop, 2003. http://www.pam2003.org/proceedings.html.

    [21] R.E. Kalman, ”A New Approach to Linear Filtering and Prediction Problems,” Transaction of the American Society of Mechanical Engineers-Journal of Basic Engineering, pp. 35-45, 1960.

    [22] E.W. Kamen and J.K. Su, Introduction to Optimal Estimation, Springer 1999.

    [23] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.E. Mangs, M. Melander, and M. Bjorkman, ”Real-Time Measurement of End-to-End Available Bandwidth using Kalman Filtering”, Proceedings of IEEE/IFIP Symposium on Network Operations and Management, pp. 73-84, 2006.

    [24] W.P. Li ”Overview of fine granularity scalability in MPEG-4 video standard”, IEEE Transactions on Circuits and Systems for Video Technology, VOL. 11, NO. 3, pp. 301- 317, March 2001.

    [25] Y. He, F.Wu, S. Li, Y Zhong and S. Yang, ”H.26L-based fine granularity scalable video coding”, Proceedings of IEEE International Symposium on Circuits and Systems, VOL. 4, pp. IV-548-IV-551, May 2002.

    [26] The JRTP library, URL-http://http://research.edm.uhasselt.be/jori/page/index.php?n=CS.Jrtplib/

    [27] The ORTP library, URL- http://www.linphone.org/index.php/eng/code review/ortp/

    [28] The WRAPI library, URL- http://sysnet.ucsd.edu/pawn/wrapi/

    [29] The WVdial tools, URL- http://open.nit.ca/wiki/index.php?page=WvDial/

    [30] Castellanos C.U., Villa D.L., Teyeb O.M., J. Elling, J. Wigard, ”Comparison of Available Bandwidth Estimation Techniques In Packet-Switched Mobile Networks”, Proceedings of The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2006.

    下載圖示 校內:2010-07-11公開
    校外:2011-07-11公開
    QR CODE