簡易檢索 / 詳目顯示

研究生: 梁家瑋
Liang, Chia-Wei
論文名稱: 嵌入式主動脈側接T型岐管之流固耦合流場分析
Fluid-Structure Interaction Analysis of Insertion Type Para-Aortic T-Bifurcation Flow
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 計算流體力學彈性不相符脈動流
外文關鍵詞: CFD, Compliance Mismatching, Pulsatile Flow
相關次數: 點閱:85下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反脈動心室輔助器嵌入降主動脈中,由於側接流道設計與反脈動血泵作動將改變自然主動脈血管中的流場特徵。本文目的在於探討嵌入的T型歧管與血管動脈腔室之間彈性不相符(Compliance Mismatching)對於血栓形成與血管於嵌入區域生物適應性之影響效應,並分析其流場對於血球細胞破壞與壁面剪應力的影響。本研究使用流體力學商用軟體FLUENT之使用者定義方程式(User-Defined Function)來進行流固耦合(Fluid-Structure Interaction)計算流體力學(Computational Fluid Dynamics)模擬,配合動物實驗所獲得的流場邊界條件來求解出血管脈動耦合效應,並以壁面剪應力(Wall Shear Stress)、剪應力梯度(Wall Shear Stress Gradient)、剪應力震盪指數(Oscillatory Shear Index)及溶血指數(Hemolysis Index)等來診斷血管壁病變發生及產生血栓或溶血的可能性。嵌入歧管與血管間之接合處間隙模型對於分析彈性不相符現象與其生物相容性問題是相當重要的。從模擬結果得知,1) T型歧管流場中產生之迴流區並未持續性停滯;2)彈性不相符之區域有較大之剪應力梯度變化; 3)歧管壁面有伴隨高剪應力的的沖刷,使血小板不會沉積附著形成血栓; 4)彈性不相符之區域,其間隙內之血液並未成滯留狀態,於週期之中皆有規律性的沖刷流動,可避免血栓的形成; 及5)以計算流體力學模擬分析嵌入體與動脈間流固耦合之流場現象與應力狀態,其接合處間隙變化模型是重要且關鍵的。

    The native blood flow characteristics in aorta will change when a para-aortic blood pump (PABP) is implanted and operated in a counter-pulsatile manner. The objective of this research is to study the effect of compliance mismatching between the aortic lumen and the inserted T-manifold on the thrombogenesis and vessel adaptation over the implant site. To analyze the disturbed flow field effects on blood cell damage and the device-induced wall stresses, a fluid-structure interaction (FSI) computational fluid dynamics (CFD) simulation was performed using a commercially available FLUENT code and a user-defined dynamic grid system. The boundary conditions required for the present CFD simulations are supplied by the inflow/outflow rates measured in animal experiment. Wall shear stress, wall shear stresses gradient, pressure, oscillatory shear index (OSI), and hemolysis index (HI) were examined to diagnose the possibility of thrombogenicity and vessel maladaptation. The modeling of the graft/vessel juncture was found crucial for analyzing the compliance mismatching effect and the biocompatibility of the implant. The present CFD analysis reveals that 1)there exists nowhere in the pulsatile juncture flow that is constantly stagnant; 2)wall shear stress gradient is found high around the compliance mismatching corners; 3)high-shear and turbulent wash-out effect in the T-manifold helps reduce platelet deposition on artificial surfaces; and 4)the flow in the compliance mismatching corner is non-stationary, forming an automatic wash-out mechanism to avoid local thrombus formation. In summary, the CFD simulation thoroughly analyzed the flowfield and stress conditions associated with the T-manifold implant and the graft/vessel juncture gap modeling is crucial for a valid fluid/structure interaction of the present design

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 簡介 1 1-1-1 心衰症狀與心室輔助器 1 1-1-2 動脈壁病變成因 3 1-1-3 T型歧管植入可能遭遇的問題 4 1-2 文獻回顧 6 1-3 研究動機與目的 8 第二章 流固耦合運算 11 2-1 流固耦合簡介與數值方法 11 2-2 邊界條件設定 12 2-3 動脈模型 13 2-4 動態網格運算流程 14 第三章 血液動力指數 16 3-1 震盪剪應力指數(Oscillatory Shear Index, OSI) 16 3-2 雷諾剪應力(Reynolds Stresses) 17 3-3 溶血指數(Hemolysis Index) 17 第四章 結果與討論 20 4-1 程式驗證 20 4-1-1 網格獨立驗證 20 4-1-2 與動物實驗的比較 20 4-2 結果討論 21 4-2-1 T型歧管入出口流量變化 21 4-2-2 T型歧管內的低速區 22 4-2-3 歧管口彈性不相符間隙之流場 23 4-2-4 T型歧管內壁面剪應力之分佈與比較 25 4-2-5 T型歧管內剪應力隨時間的變化 27 4-2-6 T型歧管內震盪剪應力探討 28 4-2-7 T型歧管壁面剪應力梯度變化 29 4-2-8 降主動脈血管壁面剪應力梯度變化 31 4-2-9 T型歧管壁面壓力變化 32 4-2-10 T型歧管內之雷諾剪應力 33 第五章 結論與未來工作 35 5-1 結論 35 5-2 未來工作 36 參考文獻 37 自述 92

    [1] Hunt S.A., Frazier O.H., “Mechanical circulatory support and cardiac transplantation,” Circulation, Vol.97, pp.2079-2090, 1998
    [2] Stevenson, L. W. and Kormos, R. L., “Mechanical cardiac support 2000: current applications and future trial design,” Journal of the American College of Cardiology, Vol. 37, No. 1, 2001, pp. 340-70.
    [3] Moulopoulos, S. D., Topaz, S., Kolff, W., “Diastolic balloon pumping in the aorta: A mechanical assistance to the failing circulation,” American Heart Journal, Vol.63, 1962, pp. 69-675.
    [4] Kantrowitz, A., Tjonneland, S., Freed, P. S., Phillips, S. J., Butner, A. N., Sherman, J. L., “Intial clinical experience with intra-aortic balloon pumping in cardiogenic shock,” Journal of the American Medical Association, Vol. 203, 1968, pp. 135-140.
    [5] Weinbaum, S., and Chien, S., “Lipid transport aspects of atherogenesis” ASME Journal of Biomechanical Engineering, Vol. 115, 1993, pp. 602-610.
    [6] Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., “Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis,” Proceedings of the Royal Society of London B, Vol. 177, 1971, pp. 109-159.
    [7] Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation,” Arteriosclerosis, Vol. 5, No 3, 1985, pp. 293-302.
    [8 ] Wootton, D. M., and Ku, D. N., “Fluid mechanics of vascular systems, diseases, and thrombosis,” Annual Review of Biomedical Engineering, Vol. 01, 1999, pp. 299-329.
    [9] Schoephoerster, R. T., Oynes, F., Nunez, G., Kapadvanjwala, M., and Dewanjee, M. K., “Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces,” Arteriosclerosis and Thrombosis, Vol. 13, No. 12, 1993, pp. 1806-1813.
    [10] Fry, D. L., “Acute vascular endothelial changes associated with increased blood velocity gradients,” Circulation Research, Vol. XXII, 1968, pp. 165-197.
    [11] Fry, D. L., “ Certain Histological and Chemical Responses of the
    Vascular Interface to Acutely Induced Mechanical Stresses in the
    Aorta of the Dog,”Circulation Research, Vol. 24, No. 1, 1969, pp.
    93-108.
    [12] Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., “Arterial wall shear and distribution of early atheroma in man,” Nature, Vol. 223, 1969, pp. 1159-1161.
    [13] Ku, D. N., and Giddens, D. P., “Pulsatile flow in a model carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Vol. 3, 1983, pp. 31-39.
    [14] Stary, H. C , Blankenhorn, D. H., Chandler, A. B., et al., "A definition of the intima of human arteries and of its atherosclerosis-prone regions," Arteriosclerosis and Thrombosis, Vol. 11, 1992, pp. 120-134.
    [15] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” ASME Journal of Biomechanical Engineering, Vol. 114, 1992, pp. 274-282.
    [16] Berger, S. A. and Jou, L-D., “Flows in stenotic vessels” Annual Review of Fluid Mechanics, Vol. 32, 2000, pp. 347-382.
    [17] Helmlinger, G., Geiger, R. V., Schreck, S., and Nerem, R. M., “Effects of pulsatile flow on cultured vascular endothelial cell morphology,” ASME Journal of Biomechanical Engineering, Vol. 113, 1991, pp. 123-131.
    [18] Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., Jr., and Gimbrone, M. A., Jr., “Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 83, 1986, pp. 2114-2117.
    [19] Tortoriello, A., Pedrizzetti, G., “Flow-tissue interaction with
    compliance mismatch in a model stented artery,” Journal of Biomechanics, Vol.37, 2004 , pp. 1-11.
    [20] Xu ,X.Y., Collins, M.W., Jones, C.J., “Flow studies in canine artery bifurcations using a numerical simulation method,” Journal of Biomechanical Engineering,
    Vol. 114, 1992, pp. 504-511.
    [21] Liu, J. S., Lu, P. C., and Chu, S. H., “Turbulence characteristics downstream of bileaflet aortic valve prostheses,” ASME Journal of Biomechanical Engineering, Vol.122, No.2, 2000, pp. 118-124.
    [22] Olufsen, M. S., “Structured tree outflow condition for blood flow in larger systemic arteries,” American Journal of Physiology, Vol. 276, 1999, pp. H257-H268.
    [23] Williams, A. R., “ Release of Serotonin from Human Platelets by Acoustic Microstreaming.” Journal of the Acoustical Society of America, Vol. 56, No. 5, 1974, pp. 1640-1643.
    [24] Sutera, S. P. and Mehrjardi, M. H., “ Deformation and fragmentaion
    of human red blood cells in turbulent shear flow,” Biophysical
    Journal, Vol. 15, 1975, pp. 1-11.
    [25] Sallam, A. M. and Hwang, N. H. C., “ Human Red Blood Cell
    Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds
    Shear Stresses,”Biorheology, Vol. 21, No. 6, 1984, pp. 783-797.
    [26] Yano, T., Sekine, K., Mitoh, A., et al., “An estimation Method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis,” Artificial Organs, Vol. 27(10), 2003, pp. 920-925.
    [27] Arora, D., Behr, M., and Pasquali, M., “A tensor-based measure for estimating blood damage,” Artificial Organs, Vol. 28(11), 2004, pp. 1002-1015.
    [28] Goubergrits, L., and Affeld, K., “Numerical estimation of blood damage in artificial organs,” Artificial Organs, Vol. 28, No. 5, 2004, pp. 499-507.
    [29] Giddens, D. P., Zarins, C. K., and Glagov, S., “Response of arteries to near-wall fluid dynamic behavior,” Applied Mechanics Reviews, Vol. 43, 1990, pp.S98-S102.
    [30] Kamiya, A., and Togawa, T., “Adaptive regulation of wall shear stress to flow changes in the canine carotid artery, ” American Journal of Physiology, Vol. 239, 1980, pp. H14-H21.
    [31] White, S. S., Zarins, C. K., Giddens, D. P., et al. “Hemodynamic patterens in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length,” ASME Journal of Biomechanical Engineering, Vol. 115, 1993, pp. 104-111.
    [32] Paul, R., Apel, J., Klaus, S., Schügner, F., Schwindke, P., and Reul, H., “Shear stress related blood damage in laminar couette flow,” Artificial Organs, Vol. 27(6) , 2003, pp. 517-529.
    [33] Hsu, U. K., “Dynamic simulation of tilting-disc mechanical heart valve in pulsatile flow,” Ph.D. Dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, 2006.

    下載圖示 校內:2016-09-02公開
    校外:2016-09-02公開
    QR CODE