簡易檢索 / 詳目顯示

研究生: 盧其達
Lu, Chi-Ta
論文名稱: 多輸入非線性系統之強健階層式模糊滑模控制器研究
Robust Hierarchical Fuzzy Sliding-Mode Controller for Nonlinear Systems with Multi-Inputs
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 71
中文關鍵詞: 非線性系統強健階層式模糊滑模控制器
外文關鍵詞: Nonlinear Systems, Robust Hierarchical, Fuzzy Sliding-Mode Controller
相關次數: 點閱:226下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個穩定的強健階層式模糊滑動模式控制器應用於單輸入單輸出非線性系統並且擴展到多輸入多輸出非線性系統。系統控制的設計目標,能期使系統在有限時間快速收歛為零。本文所提強健階層式模糊滑動模式控制器,提供一種簡單的控制法則及搭配較少的模糊控制規則庫,適合的調整歸屬函數的輸出量,類似模糊邏輯適應的滑模控制器機制,並能使非線性系统達成更佳的漸近穩定效果。整體系統應用李亞普諾夫定理來保證系統的穩定度並且推導出滑動模式控制法則,並搭配巴氏引理保證全系統收歛至零。此法則可使各系統朝向滑動面前進並有效率地對抗擾動的控制。結合模糊邏輯器及滑模控制器的優勢,減緩控制器的顫動現象。其中把模糊規則庫架構在強健階層式模糊滑動面上,能使系統更強韌。最後電腦模擬結果顯示所提方法之適用性與有效性。

    In this thesis, a stable robust hierarchical fuzzy sliding-mode controller (SRHFSMC) applied in the single-input single-output nonlinear system is expanded to multi-input multi-output nonlinear systems, where an unstable inverted pendulum and a robotic manipulator system are examined. A simple control law is provided to achieve asymptotic stability for a nonlinear system by using the minimum fuzzy control rules. By suitable adjusting the membership functions, the fuzzy logic adaptive sliding mode controller mechanism can enable the nonlinear system to achieve an even more stable effect. By using Lyapunov theory, the inferred sliding mode control law, and the matched Barbalat’s lemma, one can guarantee that the whole system errors converge to zero. The control law can drive the subsystems toward their sliding surface and reject the disturbance effective. The fuzzy rules are designed based on the stable robust hierarchical fuzzy sliding surface function and can cause the whole closed-loop system to be more robust. The proposed control scheme not only combines the advantages of FLC and SMC but also alleviates the chattering phenomenon. Computer simulation results demonstrate the validity and effectiveness of the proposed method.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgment Ⅲ Contents Ⅳ List of Figures Ⅵ List of Acronyms Ⅸ Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2. Mathematical Modeling of Nonlinear Systems 5 2.1 Introduction 5 2.2 Mathematical Model Description of Inverted Pendulum 6 2.3 Mathematical Model Description of Robotic Manipulators 9 Chapter 3. Stable Robust Hierarchical Sliding-Mode Controller Design 14 3.1 Introduction 14 3.2 Overview of Sliding Mode Control 15 3.3 Inverted Pendulum of Sliding Mode Control Design 18 3.4 Robotic Manipulators of Sliding Mode Control Design 22 3.5 Simulation Results 26 3.6 Summary 35 Chapter 4. Stable Robust Hierarchical Fuzzy Sliding-Mode Controller Design 36 4.1 Introduction 36 4.2 Overview of Fuzzy Logic Control 37 4.3 Inverted Pendulum of SRHFSMC Design 39 4.4 Robotic Manipulators of SRHFSMC Design 41 4.5 Simulation results 42 4.6 Summary 65 Chapter 5. Conclusions and Future Works 66 5.1 Conclusions 66 5.2 Future Works 67 References 68

    [1] L. A. Zadeh, “Outline of a new approach to the analysis of complex system and decision processes,” IEEE Trans. on Systems Man Cybernet., Vol. SMC-3, No. 1, pp. 28-44, 1973.
    [2] C. C. Lee, “Fuzzy logic in controller systems: fuzzy logic control –part I/II,” IEEE Trans. on Systems Man Cybernet., Vol. 20, No.2, pp. 404-435, 1990.
    [3] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Control, AC-22, pp. 212-222, 1977.
    [4] J.- Y. Hung, W. Gao, and J.-C. Hang, “Variable structure control: A survey,” IEEE Trans. Industrial Electronics, Vol. 40, No.1, pp. 2-22, 1993.
    [5] W. Gao and J.-C. Hang, “Variable structure control of nonlinear systems: A new approach,” IEEE Trans. Industrial Electronics, Vol. 40, No.1, pp. 45-55, 1993.
    [6] I. Boiko and L. Fridman, “Analysis of chattering in continuous sliding-mode controllers,” IEEE Trans. On Systems Man Cybern., IEEE Trans. Automatic Control, Vol. 50, No. 9, 2005.
    [7] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor and Francis Ltd, 1998.
    [8] K.S. Yeung and Y.P. Chen, “A new controller design for manipulators using the theory of variable structure systems,” IEEE Trans. Automatic Control, Vol. 33, No. 2, 1998.
    [9] W. Wang, X. D. Liu, and J. Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET control Theory Appl., Vol. 1, No. 1, 2006.
    [10] Yury Stepanenko, Yong Cao, and Chun-Yi Su, “Variable structure controller for robotic manipulator with PID sliding surfaces,” International Journal of Robust and Nonlinear Control, Vol. 8, pp.79-90, 1998.
    [11] M. Hached, S.M. M-Esfahani, and S.H. Zak, “Stabilization of uncertain systems subject to hard bounds on control with application to a robot manipulator,” IEEE Robotic. and Automation Vol. 4, No.3, pp. 310-323, 1988.
    [12] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, CRC Press LLC, 1999.
    [13] K.K.D. Young, “Controller design of a manipulator using theory of variable structure systems,” IEEE Trans. On Systems Man Cybernet. Vol. 8, pp. 101-109, 1978.
    [14] J.-J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.
    [15] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, NJ, 1997.
    [16] J.-H. Li, T.-H.S. Li, and T.-H. Ou, “Design and Implementation of Fuzzy Sliding-Mode controller for a Wedge Balancing System,” J. Intelligent and Robotic System, Vol.37 pp.285-306, 2003.
    [17] S.-W. Kim and J.-J. Lee, “Design of a fuzzy controller with sliding surface,” Fuzzy Sets and Systems, Vol. 71, pp.359-367, 1995.
    [18] C.-Y. Liang and J.-P. Su, “A new approach to the design of a fuzzy sliding mode controller,” Fuzzy Sets and Systems, Vol. 139, pp.111-124, 2003.
    [19] J. S. Glower and J. Munighan, “Designing fuzzy controllers from a variable structure standpoint,” IEEE Trans. Fuzzy Systems, Vol. 5, No. 1, pp. 138-144, 1997.
    [20] G. Feng, S.G. Cao, N. W. Rees, and C.K. Chak, “Design of a control system with guaranteed stability,” Fuzzy Sets and Systems, Vol. 85, pp.1-10, 1997.
    [21] R. Plam, “Sliding mode fuzzy control,” in Proc. Of IEEE Internat. Conf. on Fuzzy Systems, pp.519-526, 1992.
    [22] L.K. Wong, F.H.F. Leung, and P.K.S. Tam, “A fuzzy sliding controller for nonlinear systems,” IEEE Trans. Industrial Electronics, Vol.48, No.1, pp. 32-37, 2001.
    [23] J. Concha, A. Cipriano, and R. Vidal, “Design of fuzzy controllers based on stability analysis,” Fuzzy Sets and Systems, 121, pp.25-38, 2001.
    [24] S.Y. Yi and M.J. Chung, “Systematic design and stability analysis of a fuzzy logic controller,” Fuzzy Sets and Systems, 72, pp.271-298, 1995.
    [25] S.Y. Chen, F.M. Yu, and H.Y. Chung, “Decoupled fuzzy controller design with single-input fuzzy logic,” Fuzzy Sets and Systems, Vol.129, pp.335-342, 2002.
    [26] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode controller,” IEEE Trans. On Fuzzy Systems, Vol. 6, No. 3, 1998.
    [27] Y. Guo and P.Y. Woo, “An adaptive fuzzy sliding mode controller for robotic manipulators,” IEEE Trans. On Systems Man Cybernet., Vol. 33, NO. 2, pp. 149-159, 2003.
    [28] T.-H.S. Li and T.-M. Shieh, “Switching-type fuzzy sliding mode of a cart-pole system,” MECHATRONICS, Vol.10 pp.91-109, 2000.
    [29] L.K. Wong, F.H.F. Leung, and P.K.S. Tam, “A fuzzy sliding controller for nonlinear systems,” IEEE Trans. Indus. Electr., Vol. 48, No.1, pp. 32-37, 2001.
    [30] S. Y. Yi and M. J. Chung, “A robust fuzzy logic controller for robot manipulators with uncertainties,” IEEE Trans. On Systems Man Cybern. Vol. 27, No. 4, pp. 706-713, 1997.
    [31] M.R. Emami, A.A. Goldenberg, and I.B. Turksen, “Systematic design analysis of fuzzy-logic control and application to robotics, Part I. Modeling,” Robotics and Autonomous systems, Vol. 33, pp. 65-88, 2000.
    [32] M.R. Emami, A.A. Goldenberg, and I.B. Turksen, “Systematic design analysis of fuzzy-logic control and application to robotics, Part II. Control,” Robotics and Autonomous systems, Vol. 33, pp. 89-108, 2000.
    [33] H.X. Li, H.B. Gatland, and A.W. Green “Fuzzy variable structure control,” IEEE Trans. On Systems Man Cybern. Vol. 27, No. 2, pp. 306-312, 1997.
    [34] Q.P. Ha, D.C. Rye, H.F. and D. Whyte, “Fuzzy moving sliding mode control application to robotic manipulators,” Automatica, Vol. No. pp. 607-616 ,1999.
    [35] R.E. Precup, S. Doboli, and S. Preitl, “Stability analysis and development of a class of fuzzy control systems,” Engineering Applications of Artificial Intelligence, pp. 237-247, 2000.
    [36] T. Z. Wu, J. D. Wang, and Y. T. Juang, “Decoupled integral variable structure control for MIMO systems,” Journal of Franklin Institute. , pp. 1006-1020, 2007.
    [37] M. Roopaei and M. Z. Jahromi, “Chattering-free fuzzy sliding mode control in MIMO uncertain systems,” Nonlinear Analysis, 71, pp. 4430-4437, 2009.
    [38] H. Lee, E. Kim, H. J. Kang, and M. Park, “Design of a sliding mode controllers with fuzzy sliding surface,” IEE Proc. Control Theory Appl., Vol. 145, No. 5, pp. 411-418 , 1998.
    [39] K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, Second Edition, 1990.
    [40] F. L. Lewis, D. M. Dawson and C. T. Abdallah, Robot Manipulator Control Theory and Practice, Marcel Dekker, INC. 2004.
    [41] S. H. Zak, Systems and Control, Oxford University Press, 2003.
    [42] J. B. Burl, Linear Optimal Control, Addison Wesley, 1999.

    下載圖示
    2015-08-27公開
    QR CODE