| 研究生: |
楊欣諭 Yang, Hsin-Yu |
|---|---|
| 論文名稱: |
含氣凝膠之水性無機鋅粉底漆的熱性能分析 Thermal performance of Waterborne Inorganic Zinc Silicate Primer with Aerogel Addition |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 水性無機塗料 、富鋅底漆 、氣凝膠 、耐熱 、防火 |
| 外文關鍵詞: | Aerogels, Fire protection, Heat resistance, Waterborne inorganic coatings, Zinc silicate primer |
| 相關次數: | 點閱:74 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
防火塗料塗布於建材表面,能防止底材直接接觸高溫,使得建築物結構不受重大損害,進而延長火場逃生時間,近年來由於環保意識高漲,開發水性無機防火塗料已成產業趨勢,本研究將不同重量百分比之氣凝膠添加於水性無機富鋅塗料中,期望能提升塗料性能。本研究實驗分為一般性能、熱性能以及耐候性能,一般性能包括塗料黏度、微結構分析以及粒徑分析,熱性能包括熱傳導率測量,和加熱後的微結構以及傅立葉光譜分析,並用TMA以及TGA探討塗料受熱過程中的體積和重量變化,高溫爐耐熱測試和圓錐量熱儀測試則用來檢測塗料保護基材及防火的能力。
研究結果顯示,添加氣凝膠會增加黏度和施工難度,但不影響塗層成膜性,並降低塗層的熱傳導率。在熱性能實驗中將塗料加熱後,證實本實驗室製造之氣凝膠具有出色的耐熱性,即使在高溫下也可以發揮隔熱作用。在熱機械分析中,含1%氣凝膠之塗料具有最小的體積變化,表示具有最佳的熱穩定性,熱重分析時,由於鋅在空氣中氧化,使得三種配方的塗料重量皆增加,但熔點都相同。800℃的耐熱實驗中,發現塗層剝落的比例會隨塗膜厚度增加而增加,且在一定的膜厚範圍內,噴塗方法的耐熱性比刷塗優秀,而添加氣凝膠之塗料比未添加的優秀。圓錐量熱儀的測試中,三種配方的塗料皆展現優秀的耐燃性。在耐候性測試中,添加氣凝膠之塗料幾乎看不出顏色變化。經過以上實驗,證明添加氣凝膠使許多性能更加出色,且添加重量比1%的氣凝膠比添加0%和2%更合適。
Applying fire-retardant coatings to building materials can prevent the substrate from directly coming into contact with high temperatures and can increase the time available to flee from the fire. In recent years, due to an increase in awareness related to protecting the environment, the development of water-based inorganic fire-retardant coatings has become a necessary trend. In this work, 0%, 1%, and 2% aerogel by weight are added to water-based inorganic zinc-rich coatings and then tested to evaluate performance. It was proven that adding aerogel improves performances, where the addition of 1% aerogel by weight was found to be more suitable than 0% and 2%.
The results showed that although adding aerogel increased the viscosity and difficulty of construction, it did not affect the formation of the coating film. On the other hand, the thermal conductivity was reduced. SEM images showed the excellent heat resistance of the proposed aerogel and indicated that it can exert heat insulation even at high temperatures. The thermal mechanical analysis suggested that the coating containing 1% aerogel had the best thermal stability. In the heat resistance test, it was found that the degree to which the coating peeling off increased with increases in the film thickness, and, within a certain thickness range, spraying was found to be better than brushing. The coating adding 1% aerogel offered the best protection in the tests of performance. In the test of the cone calorimeter, the coatings of the three formulations all showed excellent flame resistance. Moreover, their weather resistances were also very good.
[1] 劉登良, “塗料工藝第四版”, 北京, 化學工業出版社, 2020.
[2] 王金平, “鋼結構防火塗料”, 北京, 化學工業出版社, 2017.
[3] K. Rissa, T. Lepistö, and K. Yrjölä, “Effect of kaolin content on structure and functional properties of water-based coatings”, Progress in Organic Coatings, vol. 55, pp. 137–141, 2006
[4] Y. C. Chuang and Y. J. Chiou, “The Behavior of Structural Steel at Elevated Temperatures”, Master, Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan, 2004.
[5] S. J. Jong, “Development Trend and Status on Fire-Protective coatings”, Chemical monthly, no. 59, pp.17-23, 2008.
[6] T. Fateh, E. Guillaume, and P. Joseph, “An experimental study of the thermal performance of a novel intumescent fire protection coating”, Fire Safety Journal, vol. 92, pp. 132–141, 2017.
[7] Donatella de Silva, Antonio Bilotta, and Emidio Nigro, “Experimental investigation on steel elements protected with intumescent coating”, Construction and Building Materials, vol. 205, pp. 232–244, 2019.
[8] L. Cheng, “Development trend and production situation of fire retardant in China”, NEW CHEMICAL MATERIALS, vol. 29, no. 8, China, 2001.
[9] 謝漢勳, “柳安木合板與一般合板對防火塗料耐燃性試驗影響之探討”, 檢驗技術, 139期, 臺灣, 2010.
[10] C. S. Chuang, S. Y. Lu, C. M. Tsai, and C. H. Ko, “Effects of Resin Binder and Formulation on Fire Performance of Intumescent Fire Retardant Paints”, Quarterly Journal of Chinese Forestry, vol. 37, pp. 461-474, 2004.
DOI: 10.30064/QJCF.200412.0010
[11] M.Jimenez, S.Duquesne, and S.Bourbigot, “Intumescent fire protective coating: Toward a better understanding of their mechanism of action”, Thermochimica Acta, vol. 449 , pp. 16-26, 2006.
[12] W. C. Kung and C. M. Koa, “The Effect of Ammonium Polyphosphate in Intumescent Fire Retardant Coating”, Master, Institute of Environmental Engineering , National Sun Yat-sen University, Kaohsiung City, Taiwan, 2018.
[13] L. Y. You and C. T. Tzeng, “A Study of the Coating Fire Retardant the Charing Rate on the Impact of Timbear”, Master, Department of Architecture, National Cheng Kung University, Tainan City, Taiwan, 2012.
[14] J. Green and Arthur A. Tracton, “Coatings Technology Handbook 3rd Edition”, pp. 709-713, Taylor & Francis eBooks, 2005.
[15] Edward D. Weil, “Fire-Protective and Flame-Retardant Coatings – A State-of-the-Art Review”, Journal of fire sciences, vol. 29, pp.262-266, 2011.
[16] Katarzyna Mróz, Izabela Hager, and Kinga Korniejenko, “Material solutions for passive fire protection of buildings and structures and their performances testing”, Procedia Engineering, vol. 151, pp. 284-291, 2016.
[17] C. S. Hsu, P. H. Liu, and C. L. Chiu, “The Development and Application of Fire Resistant Thermal Insulation Materials for Buildings”, vol. 390, pp. 84-92, 2019.
Available: https://www.materialsnet.com.tw/
[18] L. Jiantao, L. Xiangrong, and S. Zhikui, “Preparation and properties of silica aerogel fire-retardant coatings for tunnel”, New Building Materials, pp.14-17, China, 2014
[19] National Fire Agency, Ministry of the Interior
Available: https://www.nfa.gov.tw/cht/index.php?code=list&ids=958
[20] CNS14705, Method of test for heat release rate for building materials-Part 1: Cone calorimeter method, Chinese National Standards (CNS), 2013.
[21] X. Q. Shi, H. W. Yao, J. B. Yan, P. G. Dai, and D. Liang, “Development of fire-resistant waterborne inorganic building coatings”, Fire Science and Technology, vol. 37, no. 2, China, 2018.
[22] 張雪芹, and 徐峰, “無機建築塗料的研究發展”, 新型建築材料, 2004.
[23] S. Q. Wang and D. L. He, “Preparation of High SiO2/K2O Molar Ratio Potassium Silicate Waterborne Inorganic Zinc-Rich Paints and Studies on its Performance”, Master, Applied Chemistry, Hunan University, China, 2007.
[24] C. J. Zhou and S. X. Li, “Preparation of Silicate Waterborne Inorganic Zinc-rich Anticorrosion Coatings and Studies on its Performance”, Master, Applied Chemistry, Shenyang University of Technology, China, 2014.
[25] P. Wang, Q. Yang, and X. Y. Chen, “Study on the Curing Mechanism of Sodium Silicate Inorganic Zinc-Rich Coating”, Applied Chemical Industry, vol. 36, no. 11, pp. 1076-1080, 2007.
[26] “Inorganic Zinc Coatings – History, Chemistry, Properties, Applications and Alternatives”, The Australasian Corrosion Association Incorporated, 2013
[27] John B Schutt, Silver Spring Md, Potassium silicate coatings. U.S. Pat., 3620784, 1971.
[28] John B. Schutt, Silver Spring Md, Alkali-metal silicate binders and methods of manufacture. U.S. Pat., 4162169, 1979.
[29] 谢文峰and管颖超, “新型建筑无机涂料的制备与研究”, 中国防腐涂料网, 2014.
Available: http://info.coatings.hc360.com/2014/10/310910579227.shtml.
[30] S. H. Ah and C. Z. Zong, “Preparation and Property of Heavy Anti-corrosive Inorganic Zinc-Rich Coating”, Master, Materials Engineering, Qingdao University of Science and Technology, China, 2007.
[31] R. S. Xu, T. S. He, R. H. Yang, Y. Q. Da, and C. Chen, “Application zinc silicate-potassium silicate coating for anticorrosion of steel bar in autoclaved aerated concrete”, Construction and Building Materials, vol. 237, 2019.
[32] 时圣闯 and 王霞, “水性硅酸鹽無機富鋅防腐涂料的制備及性能研究”, 碩士論文, 材料工程, 西南石油大學, 中國, 2017.
[33] G. Y. Peng and J. Q. Qu, “Preparation and Properties of Waterborne Inorganic Coatings with Potassium Silicate/Silica Sol as Film-forming Substance”, Master, Chemical Engineering, South China University of Technology, Guangzhou, 2012.
[34] Y. C. Wang and L. H. Han, “Study on Preparation and Performance of Hybrid Water-Borne Inorganic Zinc-Rich Coating”, Master, Chemical Engineering, Ocean University of China, China, 2013.
[35] S. S. Gong and Y. W. Tang, “Study on Water-Borne Inorganic Zinc-rich Paints Modified by One-Dimensional Nanomaterials”, Master, Materials Physics and Chemistry, Huazhong Normal University, 2009.
[36] 李艷云, and蔡晓兰, “水性无机富鋅涂料的研究”, 碩士論文, 昆明理工大學, 2008.
[37] S. S. Kistler, "Coherent Expanded Aerogels and Jellies", Nature, vol. 127, p. 741, 1931.
[38] Aspen Aerogels and Cabot Corporation.
Available: https://www.cabotcorp.com/solutions/products-plus/aerogel
[39] 林文發 and 周世海, “隔熱材的明星材料-氣凝膠”, 化工資訊月刊, 第15卷, 第11期, 2001.
[40] M. Schmidt and F. Schwertfeger, Applications for silica aerogel products, Journal of Non-Crystalline Solids, vol. 225, pp. 364–368, 1998.
[41] L. J. Tyler, Dow Corning, U.S. Pat., 3015645, 1962.
[42] S. He, Z. Li, X. Shi, H. Yang, L. Gong, and X. Cheng, "Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area", Advanced Powder Technology, vol. 26, no. 2, pp. 537-541, 2015.
[43] H. Maleki, L. Durães, and A. Portugal, "An overview on silica aerogels synthesis and different mechanical reinforcing strategies", Journal of Non-Crystalline Solids, vol. 385, pp. 55-74, 2014.
[44] S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, "Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage", Nature, vol. 374, p. 439, 1995.
[45] A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology, vol. 199, pp. 10-26, 2008
[46] Ruben Baetens, Bjørn Petter Jelle, and Arild Gustavsen, “Aerogel insulation for building applications: A state-of-the-art review”, Energy and Buildings, vol. 43, pp. 761-769, 2011.
[47] S. K. Lee, D. H. Chung, Richard S. Horng, and T. H. Lin, “Energy Saving Building Material: the Application of SiO2 Based Aerogel”, Journal of Taiwan Energy, Vol. 1, No. 5, pp. 575-588, 2014.
[48] Michel A. Aegerter, Nicholas Leventis, and Matthias M. Koebel, “Aerogels Handbook”, Springer New York Dordrecht Heidelberg London, 2011.
[49] G.A. Nicolaon, S.J. Teichner, “Sur une nouvelle methode de preparation de Xerogels et Aérogels de Silice de leursproprietestexturales”, Bullentin Societe. Chimique de France, 1900-1906, 1968.
[50] J. F. Poco, P. R. Coronado, R. W. Pekala, amd L. W. Hrubesh, “A rapid supercritical extraction process for the production of silica aerogels”, Mater. Res. Soc. Symp. Proc., vol.431, pp.297–302, 1996.
[51] H.R. Kricheldorf, “Silicon in Polymer Synthesis- Silylation and Silylating Agents”, Springer-Verlag, Berlin, 1996.
[52] C.J. Brinker, G.W. Scherer, “The Physics and Chemistry of Sol-Gel Processing”, Academic Press, New York, 1990.
[53] R. Q. Tseng and T. H. Lin, “The effect of adding porous materials on the fire resistance of phenolic foam board”, Master, Department of Mechanical Engineering, National Cheng Kung University, Tainan City, Taiwan, 2016.
[54] G. Y. Wu and T. H. Lin, “A Study on Aerogel Cement Mortar”, Master, Department of Mechanical Engineering, National Cheng Kung University, Tainan City, Taiwan, 2019.
[55] CNS4936, High build type zinc paint, Chinese National Standards (CNS), 2015.
[56] Lee, H. K.; Tsai, P. C.; Yu, H. Y.; Wu, D. W. Patent No.: US 10,781,289 B2, United States patent, 2020.
[57] ISO 13320, “Particle size analysis — Laser diffraction methods”, 2020.
[58 ] Website of DiethelmKellerSiberHegner (Taiwan). [online]
Available: https://ins.dksh.tw/products_detail_mastersizer-3000_1.htm?gclid=CjwKCAjwz_WGBhA1EiwAUAxIcezd16I2tm-CUJwtIZasVOe9yNbHoMrI7OkjZKTZdgCM0FRte3FSBBoCndgQAvD_BwE.
[59] ISO 22007-2, “Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat source (hot disc) method”, 2015
[60] Website of Thermo Fisher Scientific Inc. [online]
Available: https://www.thermofisher.com/tw/zt/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/ftir-information/ftir-sample-handling-techniques/ftir-sample-handling-techniques-diffuse-reflectance-drifts.html
[61] CNS10757, Method of Test for Paints (Testing methods relating to physical and chemical resistance of coated film), Chinese National Standards (CNS), 2019.
[62] 陳建忠, 蔡銘儒, 吳展維, 蕭宜峯, 蒲仁勇, and 林大惠, “圓錐量熱儀之發展與應用”, 中華民國力學學會, 105 期會訊, 專題報導, 2003.
[63] V. Babrauskas and R. Peacock, “Heat Release Rate: The Single Most Important Variable in Fire Hazard”, Fire Safety J., Vol. 18, pp. 255-272, 1992.
[64] ASTM G154-16, Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials, ASTM International, West Conshohocken, PA, 2016. Available: www.astm.org.
[65] 羅時麒, 黃國倉, 黃瑞隆, 黃恩浩, 陳麒任, 林招焯, 陳世禎, and賴怡廷, “創新低碳綠建築環境科技計畫 「建築玻璃用隔熱膜性能衰減試驗方法研訂之研究」 資料蒐集分析報告”, 內政部建築研究所, 107.12
[66] ISO 9050, “Glass in building — Determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors”, 2003.
[67] ASTM E1980-11(2019), Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped Opaque Surfaces, ASTM International, West Conshohocken, PA, 2019.
Available: www.astm.org.
[68] Kai C., Fausto G., Brahim M., Emiel H., and Martin van S. A., “An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites”, Journal of CO2 Utilization, Volume 24, Pages 228-239, 2018.
[69] 康永, “水玻璃的固化机理及其耐水性的提高途径”, Foshan ceramics, vol.21, no.5, pp.44-49, 2012.
[70] S. C. Vanithakumari, K. K. Nanda, and S. B. Krupanidhi, “Synthesis of One-Dimensional ZnO Nanostructures from Zn Powder/Granule”, Journal of Nanoscience and Nanotechnology, Vol.9, 2061–2065, 2009.