| 研究生: |
林子揚 Lin, Tzu-Yang |
|---|---|
| 論文名稱: |
氧化鐵/還原氧化石墨烯奈米複合材料的製備與應用 Preparation and application of iron oxide/ reduced graphene oxide nanocomposites |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 氧化鐵/石墨烯奈米複合材料 、精氨酸 、吸附 、超級電容器 |
| 外文關鍵詞: | Iron oxide/rGO nanocomposite, L-arginine, adsorption, supercapacitor |
| 相關次數: | 點閱:154 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關氧化鐵/還原氧化石墨烯的製備及其在吸附與超級電容器上的應用。第一部分使用左旋精胺酸作為還原劑與被覆劑,以簡易的一步綠色製程製備表面被覆精胺酸的氧化鐵/還原氧化石墨烯奈米複合物作為磁性奈米吸附劑,藉由靜電交互作用及π−π作用力與凡得瓦力去除酸性染料AO12與AG25。所得氧化鐵/還原氧化石墨烯奈米複合物因左旋精胺酸之被覆與氧化鐵奈米粒子之綴飾,其等電位點約為pH 4且可磁性回收。藉著與酸性染料之間的靜電作用力與凡得瓦力或π−π作用力,表面被覆精胺酸之氧化鐵/還原氧化石墨烯奈米複合物對酸性染料的吸附相當有效。其吸附量隨還原氧化石墨烯含量的增加而增加,且遠高於氧化鐵奈米粒子與還原氧化石墨烯個別的吸附量。更者,雖然吸附量 隨著pH提高而降低,但在pH 2~6範圍內仍保有顯著的吸附量。此外,對兩種酸性染料的吸附皆遵循Langmuir恆溫吸附式,且吸附量隨著溫度的提高而增加,顯示其為擴散控制。又其吸附程序遵循擬二階動力學模式,可用氫氧化鈉溶液脫附,且此氧化鐵/還原氧化石墨烯奈米複合物具有良好的再使用性。第二部分係以兩步式水熱法在發泡鎳表面依續被覆還原氧化石墨烯與氧化鐵奈米粒子,製得具三維結構之氧化鐵/還原氧化石墨烯/發泡鎳複合電極用於超級電容器。除探討被覆還原氧化石墨烯之反應時間對後續氧化鐵之沉積與電容特性的影響外,硏究亦顯示此複合電極之電容值較氧化鐵/發泡鎳與還原氧化石墨烯/發泡鎳兩者都明顯為高,甚至較兩者數值之和仍要高出許多,顯見此複合電極之氧化鐵與還原氧化石墨烯具有顯著的加乘效果。由定電流充放電測試結果得知,在定電流密度為0.5A/g時之最高電容值可達到456.3 F/g,阻抗值則僅有0.67 Ω。
This thesis concerns the preparation of iron oxide/reduced grapheme oxide nanocomposites and their applications in adsorption and supercapacitor. For the first part, an arginine-capped nanocomposite of iron oxide nanoparticles and reduced graphene oxide (iron oxide/rGO) has been synthesized as a magnetic nano-adsorbent for the removal of acid dyes AO12 and AG25 via a facile one-step green route with L-arginine as the reducing agent and capping agent. It was quite efficient for the adsorption of acid dyes due to the electrostatic interaction and the van der Waals force or π−π interaction between the acid dyes and the arginine-capped iron oxide/rGO nanocomposite. Moreover, the adsorption for both acid dyes obeyed the Langmuir isotherms. In addition, the adsorption process obeyed the pseudo second-order kinetic model. Also, both acid dyes could be desorbed by NaOH solution and the iron oxide/rGO nanocomposite exhibited good reusability. For the second part, rGO and iron oxide nanoparticles were deposited on the surface of nickel foam (NF) successively via a two-step hydrothermal method to obtain a 3-D iron oxide/rGO/NF composite electrode for supercapacitors. In addition to examine the effect of reaction time for the deposition of rGO on the followed iron oxide deposition and the capacitance, it was also shown that the capacitance of composite electrode was much higher than those of iron oxide/NF and rGO/NF and even their sum. This revealed the iron oxide and rGO of composite electrode exhibited a significant synergistic effect.
1.張立德,奈米材料,化學工業出版社 (2000) 。
2.張志焜,崔作林,奈米技術與奈米材料,國防工業出版社 (2001)。
3.D. J. Willock, Nanotechnology: The Science of Miniaturization, Britannica, Inc. (2010).
4.龔建華,你不可不知的奈米科技,世茂出版社 (2005) 。
5.葉安義,科學發展,384,44-49 (2004) 。
6.M. De, P. S. Ghosh, and V. M. Rotello, Applications of Nanoparticles in Biology, Adv. Mater., 20, 4225-4241 (2008).
7.D. G. Gordon, L. Christopher, J. O. Gregory and J. C. Ellenbogen, Overview of Nanoelectronic Devices, IEEE, 85, 521-540 (1997).
8.M. Kobya, E. Demirbas, E. Senturk and M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96, 1518-1521 (2005).
9.K. W. Guo, Green nanotechnology of trends in future energy: a review, Int. J. Energy Res., 36, 1-17 (2012).
10.李俊龍、趙崇翔,工研院電子報,323 (2013) 。
11.T. Tsuzuki, Commercial scale production of inorganic nanoparticles, Int. J. Nanotechnology, 6, 567 - 578 (2009).
12.張立德、軍季美,奈米材料和奈米結構,科學出版社 (2001) 。
13.張揚狀,表面披覆幾丁聚醣之多功能磁性奈米載體的製備與應 用,國立成功大學化學工程研究所 (2005) 。
14.工研院工業材料研究所,材料奈米科技專刊,經濟部技術處 (2001) 。
15.楊仲準,量子尺寸效應於奈米超導金屬之研究,物理專文 (2010)。
16.尹邦耀,奈米時代,五南 台北 (2002)。
17.徐國財、張立德,奈米複合材料,五南 台北 (2004) 。
18.K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666-669 (2004).
19.A.K. Geim and A. G. Novoselov, The rise of graphene, Nature Mater., 6, 183-191 (2007).
20.X. W. Lee, J. W. Kysar and J. Hone, Elastic Properties Graphene, Science, 321, 385-388 (2008).
21.S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy and A.H. MacDonald, A Proposed New Logic Device, IEEE 30, 158-160 (2009).
22.S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K.S. Kim, B. O¨ zyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 5, 574-578 (2010).
23.R. Arsat, M. Breedon, M. Shafiel, P.G. Spizziri, S. Gilje, R.B. Kaner, K. Kalantarsadeh, W. Wlodarski, Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chem. Phys. Lett., 467, 344-347 (2009).
24.B. Li, H. Cao, J. Shao, M. Qu and J. H. Warner, Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices, J. Mater. Chem., 21, 5069–5075 (2011).
25.P. Mukhopadhyay and R. K. Gupta, Graphite, graphene, and their polymer nanocomposites, CRC Press (2013).
26.J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025-2027 (2010).
27.W. Ernie and A. V. Hill, Graphene Sensors, IEEE, 11, 3161-3170 (2011).
28.G. Huang, C. Zhang, Y. Long, J. Wynn, Y. Liu, W. Wang, and J. Gao, Low temperature preparation of alpha-FeOOH/reduced graphene oxide and its catalytic activity for the photodegradation of an organic dye, Nanotechnology, 24, 395601-395612 (2013).
29.A. H. Castro Neto and A. K. Novoselov, Two-Dimensional Crystals: Beyond Graphene, Mater. Express, 1, 10-17 (2011).
30.A. K. Sood, Graphene synthesis, properties, and phenomena, Wiley-VCH (2013).
31.A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 9, 30-35 (2008).
32.C. N. Rao, K. S. Subrahmanyam, M. Ramakrishna, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, and D. Late, A study of the synthetic methods and properties of graphenes, J. Sci. Technol. Adv. Mater., 11, 054502 (2010).
33.W. S. Hummers JR and R. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc, 80, 1339 (1958).
34.蘇清源,物理雙月刊,33,163 (2011)。
35.L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15, 974-978 (2005).
36.J. H. Warner, F. Schaffel, M. Rummeli and A. Bachmatiuk, Graphene Fundamentals and emergent applications, Elsevier Inc. (2013).
37.H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, and M. Ren, Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and waste gas and the hydrogen storage/generation, Adv. Colloid Interface Sci., 195–196, 19-40 (2013).
38.W. G. Fan, C. Zhang, W. W. Tjiu, J. Pan and T. Liu, Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes, J. Mater. Chem., 22, 25108-25115 (2012).
39.L. Cao, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, Adv. Mater., 22, 103-106 (2010).
40.W. Supinda and S. Sasha, Graphene-Silica Composite Thin Films as Transparent Conductors, Nano Lett., 7, 1888-1892 (2007).
41.P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, and N. Ravishankar, Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic, Chem. Mater., 23, 2772-2780 (2011).
42.M. Barlow, Blue Gold: The Fight to Stop the Corporate Theft of the World's water, Baker & Taylor Books (2002).
43.R. Konduru and T. V. Ramakrishna, Dye removal using low cost adsorbents, Water Sci. Technol., 36, 189-196 (1997).
44.S. Wang and Z. H. Zhu, Characterizations and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution, J. Hazard Mater., 136, 946-952 (2006).
45.劉錡樺,水處理污泥轉換活性碳-沸石複合吸附材料之研究, 國立中央大學環境工程研究所 (2010)。
46.P. K. Malik, Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics, J. Hazard Mater., 113, 81-88 (2004).
47.M. Y. Chang and R. S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interface Sci., 278, 18-25 (2004).
48.S. Chowdhury and R. Balasubramanian, Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater, Adv. Colloid Interface Sci., 204, 35-56 (2014).
49.G. K. Ramesha, A. V. Kumara, H. B. Muralidhara, and S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci., 361, 270-277 (2011).
50.T. Wu, X. Cai, S. Tan, H. Li, J. Liu, and W. Yang, Adsorption characteristics of acrylonitrile, p-toluene sulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions, Chem. Eng. J., 173, 144-149 (2011).
51.X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, and J. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 50, 4856-4864 (2012).
52.J. W. Xu and L., Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption, Langmuir, 28, 8418-8425 (2012).
53.H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li, and R. Cheng, Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue, J. Hazard Mater., 268, 191-198 (2014).
54.L. Liu, C. Li, C. Bao, Q. Jia, P. Xiao, X. Liu, and Q. Zhang, Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II), Talanta, 93, 350-357 (2012).
55.Z. Liu, X. W. Chen and J. H. Wang, Surface Assembly of Graphene Oxide Nanosheets on SiO2 Particles for the Selective Isolation of Hemoglobin, Chem. Eur. J., 17, 4864-4870 (2011).
56.T. S. Sreeprasad, S. M. Maliyekkal, K. P. Lisha, and T. Pradeep, Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification, J. Hazard Mater., 186, 921-931 (2011).
57.X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug , J. Mater. Chem., 19, 2710-2714 (2009).
58.Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan, and X. Wang, Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent, J. Mater. Chem., 22, 3527-3535 (2012).
59.G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, and J. Wang, A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution, J. Mater. Chem., 22, 1033-1039 (2012).
60.Q. Wu, C. Feng, C. Wang, and Z. Wang, A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution, Colloids surfaces. B, 101, 210-214 (2013).
61.X. Yang, J. Li, T. Wen, X. Ren, Y. Huang, and X. Wang, Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation, Colloids Surfaces. A, 422, 118-125 (2013).
62.J. Zhu, S. Wei, H. Gu, S. B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D. P. Young, and Z. Guo, One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol., 46, 977-985 (2012).
63.Y. Yao, S. Miao, S. Liu, L. P. Ma, H. Sun, and S. Wang, Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite, Chem. Eng. J., 184, 326-332 (2012).
64.W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. Pan, and T. Liu, Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes, J. Mater. Chem., 22, 25108-25115 (2012).
65.Y. Yao, S. Miao, S. Yu, L. P. Ma, H. Sun, and S. Wang, Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent, J. Colloid Interface Sci., 379, 20-26 (2012).
66.N. A. Travlou, G. Z. Kyzas, N. K. Lazaridis, and E. A. Deliyanni, Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent, Langmuir, 29, 1657-1668 (2013).
67.L. Fan, C. Luo, M. Sun, H. Qiu, and X. Li, Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal, Colloids surfaces. B, 103, 601-607 (2013).
68.Y. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, L. Xia, and A. Cao, Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning, Carbohydr. Polym., 102, 755-761 (2014).
69.J. H. Deng, X. R. Zhang, G. M. Zeng, J. L. Gong, Q. Y. Niu, and J. Liang, Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chem. Eng. J, 226, 189-200 (2013).
70.L. Fan, C. Luo, M. Sun, X. Li, and H. Qiu, Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites, Colloids surfaces. B, 103, 523-529 (2013).
71.Y. Zhang, Y. Cheng, N. Chen, Y. Zhou, B. Li, W. Gu, X. Shi, and Y. Xian, Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption, J Colloid Interface Sci, 421, 85-92 (2014).
72.H. Wei, W. Yang, Q. Xi and X. Chen, Preparation of Fe3O4@graphene oxide core–shell magnetic particles for use in protein adsorption, Mater. Lett., 82, 224-226 (2012).
73.趙祖佑,工研院 IEK,11 (2013)。
74.G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2, 213-234 (2013).
75.M. Winter and J. B. Ralph, What Are Batteries, Fuel Cells, and Supercapacitors, Chem. Rev., 104, 4245-4269 (2004).
76.C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 10,4863-4868 (2010).
77. D. C. Wang, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksay and J. Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, Acs Nano, 3, 907-914 (2009).
78.Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner,. S. Ruoff R, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 48, 2106-2122 (2010).
79.H. J. Choi, S.M. Jung, J. M. Seo, D. W. Chang, L. Dai, and J. B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 1, 534-551 (2012).
80.J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, and B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, PCCP, 13, 15384-15402 (2011).
81.J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin, and O. Crosnier, Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes, MRS Bulletin, 36, 513-522 (2011).
82.X. Xia, W. Lei, Q. Hao, W. Wang, Y. Sun and X. Wang, One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)x (M=FeO, Ni, Co) nanoparticles, Electrochim. Acta, 113, 117-126 (2013).
83.W. Shi, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hnga and Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Chem., 21, 3422-3472 (2011).
84.J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, and Y. Liu, Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials, Nanoscale, 3, 5034-5040 (2011).
85.T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao and L. Zhang, Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life, Electrochim. Acta, 114, 674-680 (2013).
86.Q. Wang, L. Jiao, H. Du, Y. Wang, and H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources, 245, 101-106 (2014).
87.K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K. P. Loh, W. S. Chin, and C. H. Sow, alpha-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials, Nanoscale, 4, 2958-2961 (2012).
88.A. K. Mishra and S. Ramaprabhu, Functionalized Graphene-Based Nanocomposites for Supercapacitor Application, J. Phys. Chem. C, 115, 14006-14013 (2011).
89.W. Qian, Z. Chen, S. Cottingham, W. A. Merrill, N. A. Swartz, A. M. Goforth, T. L. Clare, and J. Jiao, Green Chem., 14, 371-377 (2012).
90.K. Karthikeyan, D. Kalpana, S. Amaresh and Y. S. Lee, Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor, RSC Adv., 2, 12322-12328 (2012).
91.A. K. Mishra and S. Ramaprabhu, Ultrahigh arsenic sorption using iron oxide-graphene nanocomposite supercapacitor assembly, J. Appl. Phys., 112, 104315 (2012).
92.Q. Qu, S. Yang, and X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors, Adv. Mater., 23, 5574-5580 (2011).
93.S. D. Faust and O. M. Ally, Adsorption processes for water treatment, Butterworths, 16-21 (1987).
94.廖敏宏,磁性奈米載體在生物觸媒和生物分離之應用,國立成 功大學化學工程研究所 (2002)。
95.S. Chikazumi,張喣、李學養合譯,磁性物理學,聯經出版社 (1982)。
96.鄭振東,實用磁性材料,全華出版社 (1999)。
97.F. W. Sears, Zemansky, M. W., Young, H. D, University Physics, 6th Ed, Addison-Wesley (1982).
98.J. Heinze, Cyclic Voltammetry-"Electrochemical Spectroscopy", Angew. Chem. Int. Ed. Engl., 23, 831-847 (1984).
99.T. Kirk and J. B. Kawagoe, Principles of voltammetry and microelectrode surface states, J. Neurosci. Meth., 48, 225-240 (1993).
100.A. Fisher, Linear Sweep Voltammetry, University of Cambridge (2012).
101.S. Pan, J. Zhu, and X. Liu, Preparation, electrochemical properties, and adsorption kinetics of Ni3S2/graphene nanocomposites using alkyldithiocarbonatio complexes of nickel(ii) as single-source precursors, New J. Chem., 37, 654-662 (2013).
102.E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001).
103.藤嶋昭 相、井上徹,電化學測定方法,北京大學出版社出版發行 (1995)。
104.E. B. a. J. R. Macdonaid, Impedance Spectroscopy: Theory, Experiment and Application, Wiley-Interscience (2005).
105.陸瑞東,以十二烷基胺修飾之碳材及海膽型碳材為質子交換燃料電池觸媒載體之研究,國立成功大學化學工程國立成功大學化學工程所 (2012)。
106.林仲華,電化學研究方法,科學出版社,北京 (1984)。
107.C. M. B. a. A. M. O. Breet, Electrochemical-principles, Methods, and Applications, Oxford (2001).
108.O. Frank, M. Mohr, J. Maultzsch, n C. Thomse, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, and C. Galiotis, Raman 2D-Band Splitting in Graphene: Theory and Experiment, Acs Nano, 5, 2231-2239 (2011).
109.C. Xu and J.W. Zhu, Graphene-Metal Particle Nanocomposites, J. Phys. Chem. C, 112, 19841-19845 (2008).
110.Y. C. Lai, J. T. Liu, R. M. Xi, J. H. Zhan, One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles, Nanoscale Res. Lett., 5, 302-307 (2012).
111.Y. C. Chang and D. H. Chen, Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent, Macromol. Biosci, 5, 254-261 (2005).
112.Y. M. a. K. S. Rie Saito, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi composite in carbonate electrolyte, Chem. Commun., 48, 3833-3835 (2012).
113.曾士彥,加氨對電解水產氫效應之研究,國立成功大學系統及船舶機電工程所 (2011)。
校內:2019-07-14公開