簡易檢索 / 詳目顯示

研究生: 陳嘉君
Chen, Jia-Jun
論文名稱: 自由車選手風洞實驗數據分析與減阻之研究
Wind tunnel data analysis and drag reduction study of cyclists
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 自由車風洞實驗減阻表面粗糙元自由車車衣
外文關鍵詞: Cyclist, wind tunnel, drag reduction, roughness pattern, cycling jersey
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直至現今自由車發展已成熟,對於勝利分秒之差,如何提升效率與降低阻力是近年來各國不斷努力的目標,甚至使用風洞來量測風阻的變化,以協助減阻之相關研究,而對比國內風洞試驗主要都是以建築、航空太空、火箭、汽車為主,截至目前為止還尚未有真人與全尺寸模型運動相關的風洞測試,本研究主旨在於建立自由車選手風洞實驗之能量,分析選手數據並將數據進行國內外比對,同時進行減阻衣之相關研發。
    本研究總共包含四次風洞實驗,兩次車手模型實驗與兩次真人實驗,車手模型實驗主要是配合減阻衣之相關研發,也同時從中了解表面流場結構;而真人選手實驗主要是探討姿勢與踩踏對阻力之影響。
    車手模型實驗是採用全尺寸車手模型姿勢為下彎把(Dropped position),踩踏角以左腳定義為18度,並將自製的10種不同表面粗糙元貼於手臂、肩膀、腰部與大腿,而風洞實驗證明了,使用表面粗糙元於模型的兩肩、上臂、腰部與大腿,可以達到延後分離的效果,進而達到減阻之目的,特別是於本實驗中高雷諾數的部份,其中表面粗糙元3 (Pattern3)的阻力係數可以比原先模型降低超過6%,爾後將此圖形與自由車車衣結合,配合衣服的粗糙度與表面粗糙元進行實驗。
    從模型穿著車衣實驗中發現,3R在手臂與肩膀可以採用較粗糙的直條布或是蜂巢布,腰部則是粗糙的蜂巢布,背部可採用較光滑的布料,此組合在本研究中效果佳,再配合表面粗糙元3測試結果,發現3RT得到效果最佳,尤其是在腰部上,效果最為顯著,甚至可以達到減阻7.5%,但是若太過於粗糙可能會形成反效果,故表面粗糙元與衣服的粗糙度須適當的做調配,另外,本研究中證實了人體模型穿著不同的衣服下,達臨界雷諾數時,阻力驟降現象是有可能產生於車手模型穿衣實驗中,而在穿著衣服的情況下,手臂側邊有可能會產生分離泡,延後最後分離點位置。
    本研究中在真人選手靜態實驗中,使用不同的姿勢所量測到的阻力面積與阻力係數,對比國外的文獻無太大差異,都在合理範圍內,因此未來可以提供國內外更多自由車相關研究。而在真人選手踩踏實驗中,選手踩踏習性與量測到力量息息相關,因此每個人踩出來的波型也會因人而異,當選手用力踩踏時,量測到的阻力為負值,未來若是想要精進選手訓練,必須要以每位選手的特性去做調整。

    When wind flows over a human body, it may cause flow separation on the body surface. Therefore, a wake region is formed behind the body. The main source of drag is the difference between the pressure before and after the body called the pressure drag. The aim of this study is to change the surface roughness of the full-scale cyclist model in dropped position to achieve drag reduction. Roughness patterns and cycling jerseys were used to delay the separation lines in wind tunnel experiment. For the best case, the drag reduction is amounted to 6.7 % in the roughness patterns experiment and 7.5% in the cycling jersey experiment, compared to the CD value of the reference case with no roughness pattern and cycling jersey at the same Reynolds number. Surface pressure readings were taken during the drag measurement to increase insight in drag reduction mechanisms. The drag crisis may occur on cyclist model with cycling jerseys and separation bubble may be on the arm. Finally, the roughness patterns and cycling jerseys were worn and tested by Taiwanese cyclists to explores the effects of different postures and pedaling speeds on drag.

    摘要 II Abstract IV 誌謝 X 目錄 XI 表目錄 XVI 圖目錄 XVII 符號索引 XXIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 鈍形體流體力學 2 1.2.2 表面粗糙度 5 1.2.3 自由車空氣動力學 8 1.2.4 前期研究 12 1.3 研究動機與目的 13 第二章 實驗設備與架設 15 2.1 全尺寸自由車車手模型 15 2.1.1 模型幾何與坐標定義 15 2.1.2 模型印製與表面處理 16 2.2 表面粗糙元(Roughness Patterns) 18 2.3 風洞介紹 20 2.4 實驗設備 21 2.4.1 手提式壓力校正器 21 2.4.2 壓力轉換器 22 2.4.3 皮托─靜壓管 23 2.4.4 轉子式風速計 24 2.4.5 溫度計 24 2.4.6 測力載台 25 2.4.7 支撐架 26 2.4.8 資料擷取系統 27 第三章 研究方法與實驗步驟 29 3.1 實驗步驟 31 3.1.1 荷重元(Load Cell)校正與力量量測 31 3.1.2 力量量測誤差 34 3.1.3 車手模型表面粗糙元實驗(實驗A) 36 3.1.4 車手模型穿衣實驗(實驗B) 37 3.1.5 真人選手靜態實驗(實驗C) 40 3.1.6 真人選手踩踏實驗(實驗D) 42 3.2 實驗參數與分析 45 3.2.1 雷諾數(Reynolds number) 45 3.2.2 無因次化頻率(Strouhal number) 46 3.2.3 壓力係數(Pressure coefficient)與擾動壓力 46 3.2.4 阻力係數(Drag coefficient)與擾動阻力 47 3.2.5 決定係數(Coefficient of determination) 47 3.3 訊號分析 48 3.3.1 相關性分析 48 3.3.2 快速傅立葉轉換 49 3.3.3 經驗模態分析法與總體經驗模態分解法 49 3.3.4 相位平均(Phase-averaged) 51 3.3.5 神經肌肉效率(Neuromuscular efficiency, NME) 52 第四章 結果與討論 54 4.1 全尺寸自由車車手模型數據之探討 54 4.1.1 實驗A自由車與整體阻力之探討 54 4.1.2 實驗A風洞油膜視流實驗 55 4.1.3 實驗A與B兩次風洞實驗數據重複性 59 4.1.4 實驗A表面壓力分布數據探討 62 4.1.5 實驗A表面壓力孔之相關係數 69 4.2 實驗A數據探討 72 4.2.1 阻力量測結果 72 4.2.2 模型表面平均壓力係數與擾動壓力係數 75 4.2.3 瞬時壓力係數 80 4.3 實驗B數據探討 83 4.3.1 阻力量測結果 83 4.3.2 模型表面平均壓力係數與擾動壓力係數 86 4.4 實驗C數據探討 93 4.4.1 自由車與整體之阻力探討 93 4.4.2 阻力量測結果 94 4.5 實驗D數據探討 97 4.5.1 阻力量測結果 97 4.5.2 踩踏訊號 101 4.5.3 踩踏與肌肉的探討 104 第五章 結論與未來建議 109 5.1 結論 109 5.2 未來建議 111 參考文獻 112 附錄A ─ 全尺寸模型表面壓力孔座標 117 附錄B ─ 10種不同自製粗糙元黏貼於車手模型圖 120

    [1] T. N. Crouch, D. Burton, Z. A. LaBry, and K. B. Blair, “Riding against the wind: a review of competition cycling aerodynamics,” Sports Engineering, vol. 20, no. 2, pp. 81-110, 2017/06/01, 2017.
    [2] L. Prandtl, “Motion of fluids with very little viscosity,” NACA-TM-452, 1928.
    [3] J. C. Martin, C. J. Davidson, and E. R. Pardyjak, “Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling,” International journal of sports physiology and performance, vol. 2, no. 1, pp. 5-21, 2007.
    [4] T. Von Kármán, Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt: Weidmann, 1911.
    [5] C. Wieselsberger, “New data on the laws of fluid resistance,” NACA-TN-84, 1922.
    [6] G. Schewe, “On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds number,” Journal of Fluid Mechanics, vol. 133, pp. 265-285, 08/01, 1983.
    [7] R. I. Basu, “Aerodynamic forces on structures of circular cross-section. Part 1. Model-scale data obtained under two-dimensional conditions in low-turbulence streams,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 21, no. 3, pp. 273-294, 1985/12/01/, 1985.
    [8] A. Roshko, “Perspectives on bluff body aerodynamics,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 49, no. 1, pp. 79-100, 1993/12/01/, 1993.
    [9] C. Farell, and J. Blessmann, “On critical flow around smooth circular cylinders,” Journal of Fluid Mechanics, vol. 136, pp. 375-391, 1983.
    [10] J. Miau, H. Tsai, Y. Lin, J. Tu, C. Fang, and M. Chen, “Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime,” Experiments in fluids, vol. 51, no. 4, pp. 949-967, 2011.
    [11] E. Bodenschatz, and M. Eckert, "Prandtl and the Göttingen school," A Voyage Through Turbulence, K. R. Sreenivasan, K. Moffatt, P. A. Davidson and Y. Kaneda, eds., pp. 40-100, Cambridge: Cambridge University Press, 2011.
    [12] J. R. Shanebrook, and R. D. Jaszczak, "Aerodynamics of the human body," Biomechanics IV: Proceedings of the Fourth International Seminar on Biomechanics, University Park, Pennsylvania, R. C. Nelson and C. A. Morehouse, eds., pp. 567-571, London: Macmillan Education UK, 1974.
    [13] H. Chowdhury, F. Alam, D. Mainwaring, A. Subic, M. Tate, D. Forster, and J. Beneyto‐Ferre, “Design and methodology for evaluating aerodynamic characteristics of sports textiles,” Sports Technology, vol. 2, no. 3-4, pp. 81-86, 2009/01/01, 2009.
    [14] L. Brownlie, C. Kyle, J. Carbo, N. Demarest, E. Harber, R. MacDonald, and M. Nordstrom, “Streamlining the time trial apparel of cyclists: the Nike Swift Spin project,” Sports technology, vol. 2, no. 1-2, pp. 53-60, 2009.
    [15] E. Achenbach, “Influence of surface roughness on the cross-flow around a circular cylinder,” Journal of Fluid Mechanics, vol. 46, no. 2, pp. 321-335, 1971.
    [16] A. Fage, “The effects of turbulence and surface roughness on the drag of a circular cylinder,” Rep, Memo., vol. 1, 1929.
    [17] Z. Tsai, “The design of 2D force balance and the effect of textile roughness on the aerodynamic characteristics of a circular cylinder,” Master thesis, Department of Aeronautics and Astronautics, National Cheng University, 2017.
    [18] M. Kosuda, Y. Kubota, M. Yokoyama, and O. Mochizuki, “Introduction of Multiscaled Longitudinal Vortices by Fractal-Patterned Surface Roughness,” Journal of Flow Control, Measurement & Visualization, vol. 7, no. 02, pp. 120, 2019.
    [19] C. R. Kyle, and E. Burke, “Improving the racing bicycle,” Mechanical engineering, vol. 106, no. 9, pp. 34-45, 1984.
    [20] F. Grappe, R. Candau, A. Belli, and J. D. Rouillon, “Aerodynamic drag in field cycling with special reference to the Obree's position,” Ergonomics, vol. 40, no. 12, pp. 1299-1311, 1997.
    [21] T. Nonweiler, “The air resistance of racing cyclists,” 1956.
    [22] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, and J. Carmeliet, “Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests,” Journal of Biomechanics, vol. 43, no. 7, pp. 1262-1268, 2010/05/07/, 2010.
    [23] M. Zdravkovich, M. Ashcroft, S. Chisholm, and N. Hicks, “Effect of cyclist’s posture and vicinity of another cyclist on aerodynamic drag,” The engineering of sport, vol. 1, pp. 21-28, 1996.
    [24] L. Spurkland, L. M. Bardal, L. Sætran, and L. Oggiano, Low Aerodynamic Drag Suit for Cycling - Design and Testing, International Congress on Sport Sciences Research and Technology Support, pp. 89-96, 2015.
    [25] T. N. Crouch, D. Burton, N. A. T. Brown, M. C. Thompson, and J. Sheridan, “Flow topology in the wake of a cyclist and its effect on aerodynamic drag,” Journal of Fluid Mechanics, vol. 748, pp. 5-35, 2014.
    [26] T. N. Crouch, D. Burton, M. C. Thompson, N. A. Brown, and J. Sheridan, “Dynamic leg-motion and its effect on the aerodynamic performance of cyclists,” Journal of Fluids and Structures, vol. 65, pp. 121-137, 2016.
    [27] T. N. Crouch, D. Burton, J. A. Venning, M. C. Thompson, N. A. T. Brown, and J. Sheridan, “A Comparison of the Wake Structures of Scale and Full-scale Pedalling Cycling Models,” Procedia Engineering, vol. 147, pp. 13-19, 2016/01/01/, 2016.
    [28] 曾建勳, “全尺與縮尺自行車手模型流場結構與風洞數據研究,” 國立成功大學航空太空工程研究所碩士論文, 2018.
    [29] 吳敏正, “Propel在風洞實驗室怎麼吹?,” 單車誌 Cycling update, 取自:https://www.cycling-update.info/activity/industries/2543-giant-propel-4, 2017.
    [30] T. Asai, S. Hong, and K. Ijuin, “Flow visualisation of downhill skiers using the lattice Boltzmann method,” European Journal of Physics, vol. 38, pp. 024002, 03/01, 2017.
    [31] U. C. Internationale, "UCI cycling regulations: Part 1 general organisation of cycling as a sport," 2014.
    [32] 高義明, “內政部建研所環境風洞校驗及二維鈍型體空氣動力流場實驗研究,” 國立成功大學航空太空工程研究所碩士論文, 2005.
    [33] K. Pearson, “Notes on the history of correlation,” Biometrika, vol. 13, no. 1, pp. 25-45, 1920.
    [34] N. E. Huang, and Z. Wu, “A review on Hilbert‐Huang transform: Method and its applications to geophysical studies,” Reviews of geophysics, vol. 46, no. 2, 2008.
    [35] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1998.
    [36] N. E. Huang, M.-L. C. Wu, S. R. Long, S. S. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 459, no. 2037, pp. 2317-2345, 2003.
    [37] Z. Wu, and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in adaptive data analysis, vol. 1, no. 01, pp. 1-41, 2009.
    [38] T. N. Crouch, D. Burton, M. Thompson, D. T. Martin, N. A. T. Brown, and J. Sheridan, "A phase-averaged analysis of the pedalling cyclist wake." pp. 100-115.
    [39] H. Bayer, and C. Flechtenmacher, “Ermüdung und Aktionsstromspannung bei der isometrischen Muskelkontraktion des Menschen,” Arbeitsphysiologie, vol. 14, no. 3, pp. 261-270, 1950.
    [40] O. Lippold, “The relation between integrated action potentials in a human muscle and its isometric tension,” The Journal of physiology, vol. 117, no. 4, pp. 492, 1952.
    [41] V. T. Inman, H. Ralston, J. d. C. Saunders, M. B. Feinstein, and E. W. Wright Jr, “Relation of human electromyogram to muscular tension,” Electroencephalography and clinical neurophysiology, vol. 4, no. 2, pp. 187-194, 1952.
    [42] A. A. Jones, G. A. Power, and W. Herzog, “History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction,” Journal of Electromyography and Kinesiology, vol. 27, pp. 30-38, 2016/04/01/, 2016.
    [43] T. I. Arabadzhiev, V. G. Dimitrov, N. A. Dimitrova, and G. V. Dimitrov, “Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction,” Journal of Electromyography and Kinesiology, vol. 20, no. 2, pp. 223-232, 2010/04/01/, 2010.
    [44] 李尚儒, “自行車手於上彎把握姿之尾流結構探討,” 國立成功大學航空太空工程研究所碩士論文, 2017.
    [45] M. D. Griffith, T. Crouch, M. C. Thompson, D. Burton, J. Sheridan, and N. A. Brown, “Computational fluid dynamics study of the effect of leg position on cyclist aerodynamic drag,” Journal of Fluids Engineering, vol. 136, no. 10, 2014.
    [46] G. E. Erickson, Wind tunnel investigation of the interaction and breakdown characteristics of slender-wing vortices at subsonic, transonic, and supersonic speeds: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
    [47] M. M. Zdravkovich, Flow around circular cylinders: Volume 2: Applications: Oxford university press, 1997.
    [48] P. W. Bearman, “On vortex shedding from a circular cylinder in the critical Reynolds number régime,” Journal of Fluid Mechanics, vol. 37, no. 3, pp. 577-585, 1969.
    [49] A. E. Jeukendrup, and J. Martin, “Improving cycling performance,” Sports Medicine, vol. 31, no. 7, pp. 559-569, 2001.
    [50] J. García-López, J. A. Rodríguez-Marroyo, C.-E. Juneau, J. Peleteiro, A. C. Martínez, and J. G. Villa, “Reference values and improvement of aerodynamic drag in professional cyclists,” Journal of Sports Sciences, vol. 26, no. 3, pp. 277-286, 2008/02/01, 2008.
    [51] R. R. Neptune, and W. Herzog, “The association between negative muscle work and pedaling rate,” Journal of Biomechanics, vol. 32, no. 10, pp. 1021-1026, 1999/10/01/, 1999.

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE