| 研究生: |
華雲貴 Hua, Yun-Kuei |
|---|---|
| 論文名稱: |
分時多工巨量天線系統之領航訊號資源管理 Pilot Resource Management for TDD Massive MIMO Systems |
| 指導教授: |
張志文
Chang, Wenson |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 巨量天線 、導頻污染 、時移領航訊號 、合作式排程 、比例性公平 |
| 外文關鍵詞: | Massive MIMO, pilot contamination, time-shifted pilot, cooperative scheduling, proportional fair |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文第一部分,我們著重於偏時移領航訊號(PTSP)方法,在領航訊號污染問題與容納的使用者數量之間取得更好的權衡。相較於傳統的時移領航訊號(TSP)方案,我們將領航符元取代領航序列,並允許不同細胞群使用相同的符元區間,雖然導致細胞群之間干擾變強,然而經由增加使用者數量,進而達到提升總傳輸率的目的,並且透過下行鏈路功率控制再進一步的增強性能。模擬結果顯示總傳輸速率在下行鏈路與上行鏈路都能夠有顯著的提升。
在第二部分中,我們則探討整合部分領航訊號重用(FPR)及時移領航訊號(TSP)的結合方案,稱為雙時移領航訊號(DTSP)方案,以減緩全雙工巨量天線系統的領航訊號污染問題。具體而言,將TSP方案應用於雙重細胞的內部和邊緣區域,使得容納的用戶數量加倍。其中基地台為全雙工系統模式,使用導頻符號而不是導頻序列,以用於增加用戶分集增益。模擬結果證實下行鏈路和上行鏈路傳輸率顯著提升,另外數值分析也驗證了模擬的準確性。
第三部分我們探討將一個細胞劃分成多個環的時移導頻(MR-TSP)方案,並且將非重疊時隙分配給不同的環以用於發送導頻。此外,類似於傳統的TSP方案,仍然可以與屬於不同組的小區共享相同的時隙。依據分析和模擬結果,發現細胞分成多環的系統性能夠明顯提升。
最後一部分,我們開發了多小區協同調度(MCCS)算法,以適當地安排用戶完全重用相鄰小區之間的有限正交導頻,從而可以減輕大規模MIMO系統中導頻污染(PC)的影響。為此,定義多小區協作調度索引(COSI)以最大化數據速率,最大化Jain的公平性指數並在其間達到更好的平衡(CMDR、CMMF和CPF COSI表示)。
This dissertation has four parts. The first part we focus on a partial-time-shifted pilot (PTSP) scheme to find a better tradeoff between the user accommodation and orthogonality of pilots for the massive multiple-input multiple-output (MIMO) system. To this end, the pilot symbols rather than the pilot sequences are applied. Also, the neighboring cells are allowed to transmit the pilot signals using the overlapped symbol periods. Despite the stronger interference, the larger user accommodation as well as the near-far effect incurred by using the pilot symbols can contribute to the higher sum transmission rates for both the uplink and downlink cases.
Second, we focuse on a cocktail approach, to delicately integrate the two conventional countermeasures, i.e., the fractional pilot reuse and time-shifted pilots (TSP) schemes, named it dual partial-time-shifted pilot (DTSP) scheme, for the pilot contamination problem in the full-duplex massive multiple-input multiple-output system. Specifically, the TSP scheme is applied to duplicate for the inner and edge regions of a cell such that the number of accommodated users can be doubled. To achieve this, the base station should operate in the full-duplex mode; also, the pilot symbols rather than the pilot sequences are used to attain the user diversity gain. The simulation results verify the accuracy of the numerical analysis and the remarkably boosted sum rate for both the downlink and uplink cases.
For the third part, we develop a general multi-ring TSP (MR-TSP) scheme by dividing a cell into multiple rings; and allocating non-overlapped timeslots to different rings for transmitting pilots. Moreover, similar to the conventional TSP scheme, the same time slots can still be shared with cells belonging to different groups. Based on the analytical and simulation results, it is found that three rings are recommended for the TSP-based pilot contamination schemes.
Finally, we develop the multi-cell cooperative scheduling (MCCS) algorithm to properly arrange users for completely reusing the limited orthogonal pilots among the neighboring cells so that the impact of pilot contamination (PC) in the massive MIMO systems can be alleviated. To this end, the multi-cell cooperative scheduling indexes (COSIs) are defined for maximizing the data rate, maximizing the Jain's fairness index and reach a better tradeoff in-between (which are denoted by CMDR, CMMF and CPF COSIs, respectively).
[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions Wireless Communication, vol. 9, no. 11, pp. 3590-3600, Nov. 2010.
[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO bene_ts and challenges,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014.
[3] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communication, vol. 31, no. 2, pp. 264-273, Feb. 2013.
[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Feb. 2014.
[5] T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Technical Journal, vol. 20, pp. 11-22, Mar. 2015.
[6] H. Q. Ngo and E. G. Larsson, “EVD based channel estimation in multicell multiuser MIMO,” in IEEE International Conference on Acoustics Speech, Signal Processing (ICASSP), March 2012, pp. 3249-3252.
[7] M. Wang and L. M. Davis, “Distributed user selection in multi-cell massive MIMO systems with pilot contamination,” in IEEE Vehicular Technology Conference (VTC-Fall), Sept. 2015, pp. 1-5.
[8] X. Zhu, Z. Wang, L. Dai, and C. Qian, “Smart pilot assignment for massive MIMO,” IEEE Communications Letters, vol. 19, no. 9, pp. 1644-1647, Sept. 2015.
[9] X. Zheng, H. Zhang, W. Xu, and X. You, “Semi-orthogonal pilot design for massive MIMO systems using successive interference cancellation,” in IEEE Global Communications Conference, Dec. 2014, pp. 3719-3724.
[10] S. Jin, X. Wang, Z. Li, K.-K. Wong, Y. Huang, and X. Tang, “On massive MIMO zero-forcing transceiver using time-shifted pilots,” IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp. 59-74, Jan. 2016.
[11] W. A. W. M. Mahyiddin, P. A. Martin, and P. J. Smith, “Pilot contamination reduction using time-shifted pilots in _nite massive MIMO systems,” in IEEE Vehicular Technology Conference (VTC Fall), Sept. 2014, pp. 1-5.
[12] S. Govindasamy, “Uplink performance of large optimum-combining antenna arrays in poisson-cell networks,” in IEEE International Conference on Communications (ICC), Jun. 2014, pp. 2158-2164.
[13] T. Lee, H.-S. Kim, S. Park, and S. Bahk, “Mitigation of sounding pilot contamination in massive MIMO systems,” in IEEE International Conference on Communications (ICC), Jun. 2014, pp. 1191-1196.
[14] X. Zhu, L. Dai, and ZhaochengWang, “Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems,” IEEE Communications Letters, vol. 19, no. 10, pp. 1842-1845, Oct. 2015.
[15] H. Yin, D. Gesbert, M. C. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264-273, Feb. 2013.
[16] A. Hu, T. Lv, H. Gao, Y. Lu, and E. Liu, “Pilot design for large-scale multi-cell multiuser MIMO systems,” in IEEE International Conference on Communications (ICC), Jun. 2013, pp. 5381-5385.
[17] F. Fernandes, A. Ashikhmin, and T. L. Marzetta, “Intercell interference in noncooperative TDD large antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 192-201, Feb. 2013.
[18] W. A. W. M. Mahyiddin, P. A. Martin, and P. J. Smith, “Performance of synchronized and unsynchronized pilots in _nite massive MIMO systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 6763-6776, Dec. 2015.
[19] I. Atzeni, J. Arnau, and M. Debbah, “Fractional pilot reuse in massive MIMO systems,”in IEEE International Conference on Communications (ICC), Jun. 2015, pp. 1030-1035.
[20] W. Chang, Y. K. Hua, and S.-F. Liao, “Partially overlapped time-shifted pilots for massive MIMO systems,” IEEE Communications Letters, vol. 21, no. 11, pp. 2480-2483, August. 2017.
[21] A. Shojaeifard, K.-K. Wong, M. D. Renzo, G. Zheng, K. A. Hamdi, and J. Tang, “Massive MIMO-enabled full-duplex cellular networks,” IEEE Trans. on Communications, vol. 65, no. 11, pp. 4734-4750, Nov. 2017.
[22] Zhongxiang, Wei, X. Zhu, S. Sun, Y. Huang, A. Al-Tahmeesschi, and Y. Jiang, “Energy-efficiency of millimeter-wave full-duplex relaying systems: challenges and solutions,” IEEE Access, vol. 4, pp. 4848-4860, Sept. 2016.
[23] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436-1449, Apr. 2013.
[24] Y. Huang, S. He, J. Wang, and J. Zhu, “Spectral and energy efficiency tradeoff for massive MIMO,” IEEE Trans. on Vehicular Technology, vol. 67, no. 8, pp. 6991-7002, Aug. 2018.
[25] Y.-K. Hua and W. Chang, “Time shifted pilots scheme for full-duplex massive MIMO systems,” IEEE Trans. on Vehicular Technology, vol. 68, no. 3, pp. 3022-3026, Mar. 2019.
[26] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. on Wireless Communications, vol. 9, no. 11, pp. 3590-3600, Nov. 2010.
[27] X. Zhu, Z. Wang, C. Qian, L. Dai, J. Chen, S. Chen, and L. Hanzo, “Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems,” IEEE Transaction on Vehicular Technology, vol. 65, no. 5, pp. 3285-3298, May. 2016.
[28] X. Zhu, L. Dai, Z. Wang, and X. Wang, “Weighted graph coloring based pilot decontamination for multicell massive MIMO systems,” IEEE Transaction on Vehicular Technology, vol. 66, no. 3, pp. 2829-2834, Mar. 2017.
[29] W. Chang, H.-W. Chan, and Y. K. Hua, “Weighted graph coloring based softer pilot reuse for TDD massive MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6272-6285, Mar. 2018.
[30] A. Hu, T. Lv, H. Gao, Y. Lu, and E. Liu, “Pilot design for large-scale multi-cell multiuser MIMO systems,” in IEEE International Conference on Communications (ICC), Jun. 2013, pp. 5381-5385.
[31] X. Zheng, H. Zhang, W. Xu, and X. You, “Semi-orthogonal pilot design for massive MIMO systems using successive interference cancellation,” in IEEE Global Communications Conference, Dec. 2014, pp. 3719-3724.
[32] X. Chen and P. Fan, “Low-complexity location-aware multi-user massive MIMO beamforming for high speed train communications,” in IEEE Vehicular Technology Conference (VTC-Spring), Jun. 2017, pp. 1-6.
[33] L. S. Muppirisetty, T. Charalambous, and J. Karout, “Location-aided pilot contamination avoidance for massive MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2662-2674, Feb. 2018.
[34] H. T. Dao and S. Kim, “Vertex graph-coloring-based pilot assignment with location-based channel estimation for massive MIMO systems,” IEEE Access, vol. 06, pp. 4599-4607, Jan. 2018.
[35] E. Björnson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. on Wireless Communications, vol. 15, no. 2, pp. 1293-1308, Feb. 2016.
[36] B. Soret, A. D. Domenico, S. Bazzi, N. H. Mahmood, and K. I. Pedersen, “Interference coordination for 5G new radio,” IEEE Wireless Communications, vol. 25, no. 3, pp. 131-137, Jun. 2018.
[37] J. Feng, S. Ma, G. Yang, and H. V. Poor, “Impact of antenna correlation on full-duplex two-way massive MIMO,” IEEE Trans. on Wireless Communications, vol. 17, no. 6, pp. 3572-3587, Jun. 2018.
[38] J. Koh, Y.-G. Lim, C.-B. Chae, and J. Kang, “On the feasibility of full-duplex large-scale MIMO cellular systems,” IEEE Trans. on Wireless Communications, vol. 17, no. 9, pp. 6231-6248, Sept. 2018.
[39] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, Feb. 2016.
[40] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Feb. 2014.
[41] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Bene_ts and challenges,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014.
[42] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Multicell multiuser massive MIMO transmission with downlink training and pilot contamination precoding,” IEEE Trans. on Vehicular Technology, vol. 65, no. 8, pp. 6301-6314, Aug. 2016.
[43] F. Yuan, C. Yang, G. Wang, and M. Lei, “Adaptive channel feedback for coordinated beamforming in heterogeneous networks,” IEEE Trans. on Wireless Communications, vol. 12, no. 8, pp. 3980-3994, Aug. 2013.
[44] M. Alkhaled, E. Alsusa, and K. A. Hamdi, “Adaptive pilot allocation algorithm for pilot contamination mitigation in TDD massive MIMO systems,” in IEEE Wireless Communications and Networking Conference (WCNC), May. 2017, pp.1-6.
[45] R. Mochaourab, E. Bjornson, and M. Bengtsson, “Adaptive pilot clustering in heterogeneous massive MIMO networks,” IEEE Trans. on Wireless Communications, vol. 15, no. 8, pp. 5555-5568, Aug. 2016.
[46] W. A. W. M. Mahyiddin, P. A. Martin, and P. J. Smith, “Performance of synchronized and unsynchronized pilots in finite massive MIMO systems,” IEEE Trans. on Wireless Communications, vol. 14, no. 12, pp. 6763-6776, Dec. 2015.
[47] S. Jin, X. Wang, Z. Li, K.-K. Wong, Y. Huang, and X. Tang, “On massive MIMO zero-forcing transceiver using time-shifted pilots,” IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp. 59-74, Jan. 2016.
[48] K. Kim, J. Lee, and J. Choi, “Deep learning based pilot allocation scheme (DL-PAS) for 5G massive MIMO system,” IEEE Communications Letters, vol. 22, no. 4, February. 2018, pp. 828-831.
[49] R. Fredrik, P. Daniel, L. B. Kiong, E. rik G., and L. Thomas,”Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[50] X. Zhu, Z. Wang, L. Dai, and C. Qian, “Smart pilot assignment for massive MIMO,” IEEE Communications Letters, vol. 19, no. 9, pp. 1644-1647, Sept. 2015.
[51] M. H. Ahmed, H. Yanikomeroglu, and S. Mahmoud, “Fairness enhancement of link adaptation techniques in wireless access networks,”in IEEE Vehicular Technology Conference (VTC-Fall), Oct. 2003, p. 1554-1557.
[52] X. Chen, H. Hu, H. Wang, and H.-H. Chen, “Double proportional fair user pairing algorithm for uplink virtual mimo systems,” IEEE Trans. on Wireless Communications, vol. 7, no. 7, pp. 2425-2429, Jul. 2008.