| 研究生: |
李政達 Lee, Cheng-Da |
|---|---|
| 論文名稱: |
薄膜太陽能電池製程中含硒資材之純化與應用 Application and purification of selenium-containing resources from the CIGS Co-evaporation process |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 含硒資材 、奈米硒微粒 、光催化 、抑菌 |
| 外文關鍵詞: | selenium-containing resources, Selenium nanoparticles, photocatalysis, bacteriostatic |
| 相關次數: | 點閱:120 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能光電產業在台灣蓬勃發展,貴金屬如銦、鎵和硒等稀散元素需求量大,但製程中所產生廢料往往未被妥善地處理及回收再利用,以共蒸鍍製程為例,主要產生廢料為真空腔壁內遮板上的沉積生成物,其組成為大量硒摻雜少量的銅、銦及鎵。
本研究從資源回收與資材化兩個面向探討CIGS含硒資材再利用可行性,資源回收係透過鹽酸浸漬方式,提高含硒資材中的硒純度,以期能夠回收再利用,同時達到銅、銦及鎵與硒分離目的;資材化將未經提純含硒資材進行奈米化,探討利用奈米硒微粒及將其披覆於載體表面,應用於勻相與異相光催化反應降解染料-亞甲基藍及材料表面抑菌之可行性。
實驗結果得知,鹽酸浸漬可將含硒資材中硒純度由92.92%(1N2)提高至99.57%(2N5),反應條件為70℃,鹽酸12N,浸漬時間24小時。最佳奈米化條件為硒代硫酸鈉濃度1474 mg/L,硫酸4.5M及PVA 1%,奈米硒微粒粒徑分布範圍為28.8至33.8 nm。勻相光催化部分,透過最佳奈米化條件合成奈米硒微粒可得最佳脫色率為21.1%,非勻相光催化部分,由含浸法在披覆液硒代硫酸鈉濃度328.6 mg/L,硫酸4.5M及PVA0.125%條件下製備的氧化鋁載體可得最佳脫色率為36.11%,團簇法在硒代硫酸鈉濃度1179.2 mg/L,硫酸4.5M條件下製備的氧化鋁載體可得最佳脫色率為29.86%,非勻相光催化部分的脫色率皆高於勻相光催化,且能夠減少硒流佈至環境中的濃度及機會。抑菌成效以團簇法製備PP纖維布效果最佳,24小時可達抑菌率99%。歸納上述實驗結果,含硒資材的硒純度可以鹽酸浸漬的方式提高;資材化部分,透過奈米化製備奈米硒微粒,可使其具有勻相及異相光催化降解亞甲基藍及使材料表面具有抑菌的能力。
Recently the growth of Optoelectronics industry in Taiwan is very quick. Many precious metals and rare elements, like indium, gallium and selenium, have been used during making process. Wastes from the making process was seldom treated and reused well. It will cause environmental problem. For example, CIGS co-evaporation process. The main composition of the wastes is selenium and the rest is copper, indium and gallium.
This study discussed the reuse possibility and other application of selenium-containing sources comes from CIGS co-evaporation process. Dipping into hydrochloric acid could improve the purity of selenium and separate selenium from other metal for reusage. For another application, synthesizing selenium nanoparticles is not only for homogeneous and heterogeneous photocatalysis to decolor Methylene Blue but also for inhibiting growth of Escherichia coli(E. coli)on the substrate surface.
From the results, the purity of selenium could be achieved about 99.57% under temperature 70℃, hydrochloric acid concentration was 12N and dipping time was 24 hours. The optimal conditons for synthesizing selenium nanoparticles were [sodium selenosulphate] = 1474 mg/L, [sulphuric acid] = 4.5 M ,and [polyvinyl alcohol] = 1%. Under the optimal conditions, the size distribution of selenium nanoparticles was from 28.8 to 33.8 nm. The best decolor rate for homogeneous photocatalysis was about 21.1%. For heterogeneous photocatalysis, the best decolor rate of substrate coated selenium nanoparticles under the conditions [sodium selenosulphate] = 382.6 mg/L, [sulphuric acid] = 4.5 M ,and [polyvinyl alcohol] = 0.125% by impregnation method was 36.11% and under [sodium selenosulphate] = 1179.2 mg/L, and [sulphuric acid] = 4.5 M by cluster method was 29.86%. Compared with homogeneous photocatalysis, decolor rate of is higher. The heterogeneous photocatalysis can also reduce concentration of selenium leakage into the environment. The substrate coated selenium nanoparticles by cluster method could inhibit more E. coli compared with impregnation method on the surface in 24 hours. The best inhibit growth rate of cluster method in 24 hours was about 99%.
According to the results, using hydrochloric acid could improve the purity of selenium and separate it from the selenium-containing sources for reusage. Synthesizing selenium nanoparticles could be potential for homogeneous and heterogeneous photocatalysis to decolor methylene blue and for inhibiting growth of Escherichia coli(E. Coli)on the substrate surface for other application.
參考文獻
Beavington, F., Cawse, P.A., & Wakenshaw, A. (2004). Comparative studies of atmospheric trace elements: improvements in air quality near a copper smelter. Science of the Total Environment, 332(1-3), 39– 49.
Benko, I., Nagy, G., Tanczos, B., Ungvari, E, Sztrik., Eszenyi, P., Prokisch, J., & Banfalvi,G. (2012). Subacute Toxicity of Nano-selenium compared to other selenium in mice. Environmental Toxicology and Chemistry, 31(22), 2812-2820.
Butterman, W.C., & Brown, Jr., R.D.(2004). Selenium,U.S. Geological Survey
Cullity, B.D., & Stock, S. R.(2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
Chiou, Y.D., & Hsu, Y.J.(2011).Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Applied Catalysis B: Environmental, 105, 211-219.
Cao, X., Xie, Y., Zhang, S., &Li ,F. (2004). Advanced Material. 16 ,649.
Cutter, G.A., & Bruland, K.W. (1984). The marine biogeochemistry of selenium: a re-evaluation. Limnology and Oceanography, 29, 1179–1192.
Cherin, P., & Unger, P.(1967).The Crystal Structure of Trigonal Selenium. Inorganic Chemistry,6(8),1589-1590.
Doran, J. W., & Alexander, M. (1977). Microbial formation of volatile Se compounds in soil. Soil Sceince Society of America Journal, 40(5), 687–690.
EU-LIFE Environment Demonstration Project (2006). Recycling of pv-thin-film-modles. Recovery of Solar Valuable Materials, Enrichment and Decontamination, 1-4.
Froment, M., & Lincot, D.(1995). Phase formation process in solution at the atomic level : metal chalcogenide semiconductors. Electrochimica Acta, 40(10), 1293-1303.
Fernández, A., Lassaletta, G., Jiménez, V. M., Justo, A., González-Elipe, A.R., Herrmann, J. M., Tahiri, H., & Ait-Ichou Y.(1995). Preparation and characterization of TiO2 photocatalysts supported on various rigidsupports (glass, quartz and stainless steel). Comparative studies ofphotocatalytic activity in water purification. Applied Catalysis B:Environmental, 7, 49-63.
Floor, G.H., & Roman-Ross, G. (2012). Selenium in volcanic environments: A review. Applied Geochemistry, 27(3), 517-531.
Germani, M.S., Small, M., Zoller, & W.H., Moyers, J.L.(1981). Fractionation of elements during copper smelting. Environmental Science and Technology, 15, 299-305.
Haygarth, P.M., Fowler, D., Sturup, S., Davison, B.M., & Tones, K.C.(1994).Determination of gaseous and particulate selenium over a rural grassland in the UK. Atmospheric Environment, 28, 3655-3663.
Hasegawa, H., Rahman, I. M.M., Egawa, Y., Sawai, H.,& Begum, Z.A. (2013). Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment. Microchemical Journal, 106, 289–294.
Kang, H. N., Lee, J.Y., & Kim, J.Y. (2011). Recovery of indium from etching waste by solvent extraction and electrolytic refining. Hydrometallurgy, 110(1-4), 120-127.
Koito, T., Tekawa,M., & Toyoda, A. (1998). A novel treatment technique for DMSO wastewater. IEEE Transactions on Semiconductor Manufacturing, 11(1), 3–8.
Kumar, B.S., Tiwari, S.K., Saikant, R., Manoj, G., Kunwar, A., Sivaram, G., Abid, Z., Ahmad, A., Priyadarsini, K.I., & Khan, A.A.(2010). Antibacterial and ulcer healing effects of organoselenium compounds in naproxen induced and Helicobacter pylori infected Wistar rat model. Journal of Trace Elements in Medicine and Biology, 24(4),263-270.
Lin, Z.H., & Wang, C.R.C.(2005). Evidence on the size-dependent spectral evolution of selenium nanoparticles. Materials Chemistry and Physics, 92, 591-594.
Langi, B., Shah, C., Singh, K.,Chasker, A.,Kumar, M., & Bajaj, P.N.(2010). Ionic liquid-induced synthesis of selenium nanoparticles. Materials Research Bulletin, 45, 668-671.
Lemly, A.D.(2004). Aquatic selenium pollution is global environmental safety issue. Ecotoxicology and Environmental Safety, 59(1), 44-56.
Lemly, A.D.(1985). Ecological basis for regulating aquatic emissions from the power industry: The case with selenium.Regulatory Toxicology and Pharmacology , 5(4), 465-486.
Mosher, B.W., & Duce, R.A. (1987). A global atmospheric selenium budget. Journal of Geophysical research, 92(11), 13289-13298.
Mehta, S.K., Chaudhary, S., Kumar, S., Bhasin1, K.K., Torigoe, K., Sakai, H., & Abe, M. (2008). Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions. Nanotechnology, 19.
Mozia, S., Tomaszewska, M., & Morawski, A.W.(2007). photodegradation of azo dye acid red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed. Dyes and Pogments, 75(1),60-66.
Moore, S.B., Winckel, J., Detwiler, S.J., Klasing, S.A., Gaul, P.A., Kanim, A.R., Kesser, B.E., Debevac, A.B., Beardsley, A., &Puckett, L.A.(1990).Fish and wildlife resources and agricultural irrigation drainage in the San Joaquin Valley, California. San Joaquin Valley Drainage Program, Sacamento, CA.
Mathews, S.M., Spalholz, J.E., Dubielzig, R.R., Grimson, M.J.,& Reid, T.W.(2002). The Efficacy of an Organo-Selenium Coating on Silicone Hydrogel Contact Lenses. Investigative Ophtalmology and Visual Science,43(12),3109.
Nath , S., Ghosh, S. K., Panigahi, S., Thundat , T., & Pal, T.(2004). Synthesis of selenium nanoparticles and its photocatalytic application of methylene blue under UV irradiation. Langmuirm, 20 , 7880-7883.
Najafi, N. M., Seidi S., Alizadeh R., & Tavakoli H.(2010).Inorganic selenium speciation in environmental samples using selective electrodeposition coupled with electrothermal atomic absorption spectrometry.Spectrochimica Acta Part B, 334-339.
Nraigu, J.O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47-49.
Ogi, T., Tamaoki K., Saitoh, N., Higashi, A., Konishi, Y. (2012). Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. Biochemical Engineering Journal, 63(15), 129-133.
Popescu, M.A.(2000). Non-Crystalline Chalcogenides. Netherlands :Kluwer Academic Publishers.
Ramos, J.F., Tran, P.A., & Webster, T.J. (2012). Selenium Nanoparticles for the Prevention of PVC-related Medical Infections. Brown University, School of Engineering.
Ratushnaya, E.V., Kirova, Y.I., Suchkov, M.A., Drevko, B.I., & Borodulin, V.B. (2002). Synthesis and Antibacterial Activity of Organoselenium Compounds. Pharmaceutical Chemistry Journal, 36(12) , 652-653.
Shah, C.P., Kumar, M., & Bajaj, P.N.(2007) .Acid-induced synthesisof polyvinyl alcohol-stabilized selenium nanoparticles. Nanotechnology,18.
Spallholz, J. E. (1994). On the nature of selenium toxicity and carcinostatic activity. Free Radical Biology and Medicine, 17(1), 45-64.
Shah, C.P., Dwivedi, C., Singh, K.K., Kumar, M., & Bajaj, P. N. (2010). Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles.Material Research Bulletin, 45, 1213-1217.
Small, M., Germani, M.S., Small, A.M., Zoller, W.H., &Moyers, J.L. (1981). Airborneplume study of emissions from the processing of copper ores in southeastern Arizona.Environmental Science and Technology, 15(3), 293–299.
Streltsov, E.A., Poznyak , S.K., & Osipovich, N.P.(2002). Photoinduced and dark underpotential deposition of lead on selenium. Journal of . Electroanalytical Chemistry, 518, 103–114.
Tran, P.A.(2010). Nanostructured selenium for biomedical applications: from theory to practice, Doctoral Dissertation, Brown University, Department of Physics.
Tran, P.A., & Webster, T.J. (2011). Selenium nanoparticles inhibit Staphylococcus aureus growth.International Journal of Nanomedicine, 6, 1553-1558.
Wang, Q., & Webster, T.J.(2013). Short communication : inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. International Journal of Nanomedicine, 8 , 407-411.
Wang, C.B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology. 31 (7), 2154–2156.
Wen, H., & Carignan, J. (2007). Reviews on atmosphere selenium: Emissions,speciation and fate. Atmospheric Environment, 41(34), 7151-7165.
Winkel, L.H.E., Johmson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L.(2012). Environmental Selenium Research: From Microscopic Process to Global Understanding.Environmental Science and Technology, 46, 571-579.
Wada, T., Kohara, N.,& Nishiwaki, S.(2001). Characterization of the Cu (In, Ga) Se2 /Mo interfaces in CIGS solar cells. Thin Solids Films, 387(1-2), 118~122.
Yang, L.B., Shen, Y.H., Xie, A.J., Liang, J.J.,& Zhang, B.C.(2008). Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for ecolorization of cango red under UV irradiation. Materials
Research Bulletin, 43, 572-582.
Zhang, S.Y., Zhang, J., Wang, H.Y., & Chen, H.Y.(2004). Synthesis of selenium nanoparticles in the presence of polysaccharides. Materails
Letters,58,2590-2594.
Zhang,W. X., & Masciangioli, T. (2003). Environmental Technologies at the nanoscale. Environmental Science & Technology.
于台珊,奈米光觸媒殺菌效能評估研究,行政院勞工委員會安全衛生研究所,2006。
王鐘翊、李前勇、張德志、鄭顆敏,納米硒的研究進展和應用前景,2008。
史洪佛、王紅艷、張莉,PVA軟模板法製備奈米硒,2009。
白燕、羅海英、鄭文杰,奈米硒的界面化學作用,暨南大學學報(自然科學版),第三十二卷第三期,2011。
行政院環境保護署網站,http://www.epa.gov.tw
呂晃志,奈米銀,逢甲大學奈米科技研究中心,2007。
李倩,低品位含硒物料中回收硒的研究,中南大學碩士論文,2010。
李清華、洪基恩、蔡尚林、廖靖華,廢單晶矽太陽能電池中矽資源回收之研究,科學與工程技術期刊,第八卷第三期,2012。
李清華、蔡尚林、洪崇欽、 蕭孟官,砷化鎵廢棄物資源再生方法,專利,2003。
李雯雯,薄膜太陽光電設備發展概述,工研院IEK, 2008。
李澤甫、鐘國清,奈米硒的製備與應用研究進展,當代化工,第四十卷第四期,2011。
林琨智,藉由過度金屬改質以提升TiO2 觸媒之光催化性能,崑山科技大學環境工程系,碩士論文,2012。
林福助,奈米硒材料之合成研究,國立中正大學化學研究所,碩士論文,2004。
林凱隆、張文凱、官建丞,TFT-LCD廢玻璃替代部分黏土燒製環保地磚之研究,工業污染防治,第1~17頁,2008。
洪楨琳,溫度與濕度對光催化分解苯蒸氣之影響研究,國立中山大學環境工程研究所,碩士論文,2001。
徐曄、張微、毛敏,基於ATP生物化學發光法微生物含量檢測儀,儀器儀表學報,第二十八卷第二期,2007。
陳忠杰、寧豫昌、高領,食品微生物檢測技術研究發展,鄭州牧業工程高等專科學校學報,第二十七卷第二期,2007。
財團法人光電科技工業協進會,2011。
馬遠榮,低維奈米材料,科學發展,382期。2004。
高瑛紜、劉蘭萍、王義基,液晶面板製造業廢棄物資源化現況評析,綠基會通訊,2008。
高遠、吳昊、顧珩、王繼民,從含硒廢料中回收製備高純硒,有色金屬(冶煉部分)3期,2009。
侯曉川、趙連生、高叢增、張啟修、張貴清、曹佐英、李青剛,從鎳鉬礦冶煉煙塵浸出液中還原硒的熱力學及應用,中國有色金屬學報,第二十卷第十二期,2010。
張佳峰、張寶、郭學益、 丹青、沈超、李倩,Na2SO3 浸出法提純粗硒工藝研究,稀有金屬材料與工程,第四十卷第一期,2011。
張琪芬,利用化學水浴沉積法製作Ni-ZnO光電極之研究,國立中央大學能源工程研究所,碩士論文,2008。
許俊男、李傳斌、藍培倫,行政院國家科學委員會專題研究計畫成果報告,利用高效率離子層析儀配合加馬計測方法研究0 價、4 價及6 價硒物種在花崗岩的吸附行為,2006。
許晉瑋,奈米化之鈣劑預防骨質疏鬆症之保健功效與安全性評估,中原大學生物醫學工程學系,碩士論文,2007。
連建洲、陳海瑞、李重慶,光洋應用材料科技公司,銅銦鎵硒(CIGS)薄膜型太陽能電池之製程殘靶綜合回收技術先期研發計畫,2010。
郭洪英,奈米硒製備與表徵,河北大學,碩士論文,2007。
曾才榮,太陽能電池技術專利分析與研究,國立政治大學科技管理研究所,碩士論文,2008。
楊先仁、黃啟輝、林美素、周育徵、施修正、陳麗娟,鎵純化精煉技術之開發,遠東學報,第二十九卷,第三期,2012。
楊素華、蔡泰成,太陽能電池,科學發展390期,2005。
楊乾信、池易楷、楊惇智,開啟明日之窗-奈米材料,科學發展,392期,2005。
鄭天喆、姚福燕,深入淺出談奈米科技,初版,達觀出版事業有限公司,台北市,2004。
經濟部,產業技術白皮書-綠能科技領域,2011。
經濟部工業局,資源化工業輔導計畫,2002。
經濟部工業局,工業廢棄物清除處理與資源化輔導計畫,2007。
經濟部能源局,再生能源發展條例,2009。
經濟部能源局,年報,2002。
經濟部工業局,光電業資源化應用技術手冊-薄膜電晶體液晶顯示器,2003。
萬雯、楊斌、劉大春,硒的現狀及其工藝研究,全國真空冶金與表面工程學術研討會會議論文集,2005。
廖原篁,台灣地區太陽能電池與太陽能板流佈與管理之研究,國立台北科技大學環境工程與管理研究所,2009。
劉軍身、李桂華,螯合型樹脂分離回收鎵和銦的研究進展,稀有金屬與硬質合金,第33卷,第四期,2005。
蔡世兵,從高品位硒、碲廢料中分離回收硒和碲,濕法冶金,第27卷,第1期,2008。
蔡慎勳,二氧化矽包覆銀核殼粒子的製備及其抗菌性之研究,逢甲大學紡織工程研究所,碩士論文,2009。
蕭育仁、謝嘉民、沈昌宏、薛丁仁、葉祐名,共蒸鍍製程技術發展銅銦鎵硒(CIGS)太陽能電池,國家奈米元件實驗室,2007。
謝東坡、張仁銓、莊佳智、蔡松雨,共蒸鍍銅銦鎵硒(CIGS)太陽電池之發展現況及未來展望,工業材料雜誌276 期,2009。
謝東坡、黃瑜,銅銦鎵硒(CIGS)太陽能電池-共蒸鍍製程技術發展簡介,2008。
魏先紅、鄒光中、郭春花,硒與鐵氧體共沉澱的研究,遼寧化工,第34卷,第7期,2005。
羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM,2004。
行政院環保署,「事業廢棄物查核與輔導改善」第四年專案工作計劃 事業廢棄物行業製程技術稽查手冊-光電材料及元件製造業,台北市,2004。