簡易檢索 / 詳目顯示

研究生: 林達遠
Lin, Ta-Yuan
論文名稱: 非線性緩坡方程式之初步研究
A Preliminary Study of Nonlinear Mild Slope Equation
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 53
中文關鍵詞: 非線性緩坡方程式
外文關鍵詞: nonlinear, mild slope equation
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以非線性演進型緩坡方程式為控制方程式,並利用有限差分法 (Finite Difference Method, FDM),建立一維數值模式,以模擬波浪變形效應。文中將緩坡方程式推導至二階量,以改進無法計算非線性波浪之限制。本文模式計算等水深地形底床時,與Stokes 波比較,發現可準確地模擬波浪變形;並應用於波浪通過潛堤地形底床,發現在潛堤前方與上方的結果與實驗數據比較,有良好的結果,在潛堤後方,由於非線性效應的增強,導致所得結果與實驗數據比較,並非相當地吻合,但就趨勢而言,還是有良好的一致性。

    The nonlinear mild slope equation was discretized by a finite difference method to simulate wave transformations. In this paper, the mild slope equation is expended to the second-order approximation for improving the limitation of calculating nonlinear waves. The numerical model is applied to a set of published experimental cases. Comparison of the results shows that the present model adequately predicts the measurements.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 本文組織 5 第二章 理論基礎 2-1 非線性波浪方程式 6 2-2 控制方程式 9 2-3非線性延散關係式 17 2-4 邊界條件 19 第三章 數值模式 3-1 控制方程式之離散化 23 3-2 邊界條件之離散化 25 3-3 收斂條件 27 3-4 計算流程 27 第四章 結果與討論 4-1 等水深地形底床 29 4-2 對稱梯形潛堤地形底床 33 4-3 非對稱梯形潛堤地形底床 38 4-4 半無限長潛堤地形底床 42 4-5 非線性效應之研究 44 第五章 結論與建議 5-1 結論 47 5-2 建議 47 參考文獻 49

    1.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of Thirteenth International Coastal Engineering Conference, Canada, ASCE, pp. 471-490 (1972).
    2.Behrendt, L., “A Finite Element Model for Water Waves Diffraction Including Boundary Absorption and Bottom Friction,” Series Paper 37, Institute of Hydrodynamics and Hydraulic Engineering, University of Denmark (1985).
    3.Berkhoff, J.C.W., Booy, N. and Radder, A.C., “Verification of Numerical Wave Propagation Models for Simple Harmonic Linear Water Waves,” Coastal Engineering, Vol. 6, pp. 255-279 (1982).
    4.Beji, S. and Battjes, J. A., “Numerical Simulation of Nonlinear Wave Propagation Over A Bar,” Coastal Engineering, Vol. 23, pp. 1-16 (1994).
    5.Booij, N., “A Note on the Accuracy of Mild-Slope Equation,” Coastal Engineering, Vol. 7, pp. 191-203 (1983).
    6.Broer, L. J. F., “On the Hamiltonian Theory of Surface Waves,” Appl. Sci. Res., Vol. 29, pp. 430-466 (1974).
    7.Copeland, G.J.M., “A Practical Alternative to the Mild-Slope Wave Equation,” Coastal Engineering, Vol. 9, pp. 125-149 (1985).
    8.Djordjevic, V.D. and Rdekopp, L.G., “On the Development of Packets of Surface Gravity Wave Moving Over An Uneven Bottom,” Z. Angew. Math. Phys., Vol. 29, pp. 950-962 (1978).
    9.Ebersole, B.A., Cialone, M.A. and Prater, M.D., “Regional Coastal Processes Numerical Modeling System,” Department of the Army, Waterway Experiment Station, Corps of Engineers (1986).
    10.Hsu, T.W. and Wen, C.C., “A Study of Using Parabolic Model to Describe Wave Breaking and Wide-Angle Wave Incidence,” Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, pp. 515-527 (2000).
    11.Hsu, T.W. and Wen, C.C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering. Vol. 28, pp. 1479-1498 (2001).
    12.Ito, Y. and Tanimoto, K., “A Method of Numerical Analysis of Wave Propagation-Application to Wave Diffraction and Refraction,” Proceedings of Thirteenth International Coastal Engineering Conference, ASCE, pp. 503-522 (1972).
    13.Kaihatu, J. M. and Kirby, J. T., “Spectral Evolution of Directional Finite Amplitude Dispersive Waves in Shallow Water,” Proc. 23rd Int. Conf. Coastal Eng., Venice. ASCE, pp. 364-377 (1992).
    14.Kaihatu, J. M. and Kirby, J. T., “Nonlinear Transformation of Waves in Finite Water Depth,” Phys. Fluid, Vol. 7, No. 8, pp. 1-12 (1995)
    15.Kirby, J.T. and Dalrymple, R.A., “A Parabolic Equation for the combined Refraton - Diffration of Stokes Waves by Mildly Varying Topography,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1983).
    16.Kirby, J.T. and Dalrymple, R.A., “Verification of A Parabolic Equation for Propagation of Weakly – Nonlinear Waves,” Coastal Engineering, Vol. 8, pp. 219-232 (1984).
    17.Kirby, J.T. and Dalrymple, R.A., “User’s Manual, Combined Refraction / Diffraction Model, REF/DIF 1, Ver 2.3,” Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, De 19716 (1991).
    18.Kittitanasuan, W., Goda, Y., and Shiobara, T., “ Deformation of Nonlinear Waves on a Rectangular Step,” Coastal Engineering In Japen, Vol. 36, No. 2, pp. 133-153 (1993).
    19.Lee, C., Park, W.S., Cho, Y.S. and Suh, K.D., “Hyperbolic Mild-Slope Equations Extended to Account for Rapidly Varying Topography,” Coastal Engineering, Vol. 34, pp. 243-257 (1998).
    20.Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
    21.Li, B., “Parabolic Model for Water Waves,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 123, No. 4, pp. 192-199 (1997).
    22.Liu, P.L.F. and Tsay, T.K., “On Weak Reflection of Water Waves,” Journal of Fluid Mechanics, Vol. 131, pp. 59-71 (1983a).
    23.Liu, P.L.F. and Tsay, T.K., “Refraction – Diffraction Model for Weakly Nonlinear Water Waves,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1984).
    24.Maa, J.P.Y., Maa, M.H., Li, C. and He, Q., “Using the Gaussian Elimination Method for Large Banded Matrix Equations,” Special Scientific Report, No. 135, Virginia Institute of Marine Science, Gloucester Point, VA 23062 (1997).
    25.Madsen, P.A. and Larsen, J., “An Efficient Finite-Difference Approach to the Mild-Slope Equation,” Coastal Engineering, Vol. 11, pp. 329-351 (1987).
    26.Mei, C. C., “The Applied Dynamics of Ocean Surface Waves,” World Scientific Publishing Co., pp. 504-604.
    27.Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
    28.Sommerfeld, A., “Mechanics of Deformable Bodies,” Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964).
    29.Suh, K.D., Lee, C. and Part, W.S., “Time-Dependent Equations for Wave Propagation on Rapidly Varying Topography,” Coastal Engineering, Vol. 32, pp. 91-117 (1997).
    30.Tang, Y., “Linear and Nonlinear Water Waves on Water with Variable Depth – Theoretical and Numerical Models for Combined Refraction – Diffraction with Reflection,” Ph.D. dissertation, Dept. of Civil Engineering Laval University, Quebec (1994).
    31.Tang, Y. and Oullet, Y., “Models for Combined Refraction – Diffraction of Water Waves with Nonlinear Harmonics,” Coastal Engineering, Vol. 31, pp. 3-36 (1997).
    32.Tang, Y. and Oullet, Y.,“A New Kind of Nonlinear Mild-Slope Equation for Combined Refraction – Diffraction of Multifrequency,” Ph.D. dissertation, Dept. of Civil Engineering Laval University, Quebec (1994).
    33.Tsay, T.K. and Liu, P.L.F., “A Finite Element Model for Wave Refraction and Diffraction,” Applied Ocean Research, Vol. 5, No. 1, pp. 30-37 (1983).
    34.Tsay, T.K. and Liu, P.L.F., “Numerical Solution of Water-Wave Refraction and Diffraction Problems in the Parabolic Approximation,” Journal of Geophysical Research, Vol. 87, No. C10, pp. 7932-7940 (1982).
    35.Vantorre, M. “Third – order Theory for Determining The Hydrodynamic Forces on Axisymmetric Floating or Submerged Bodies in Oscillatory Heaving Motion,” Ocean Engineering, Vol. 13, No. 4, pp. 339-371 (1986).
    36.Watanabe, A. and Maruyama, K., “Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking,” Coastal Engineering in Japan, Vol. 29, pp. 19-39 (1986).
    37.Williams, R.G., Darbyshire, J. and Holmes, P., “Wave Refraction and Diffraction in a Caustic Region: A Numerical Solution and Experimental Validation,” Proceedings of Institute Civil Engineering, Vol. 69, No. 2, pp. 635-649 (1980).
    38.蔡清標、陳鴻彬,「以有限體積法在近岸波場之初步應用」,第十九屆海洋工程研討會論文集,台中,pp. 73-79 (1997)。
    39.蔡丁貴、劉立方,「非線性波浪引起港池振盪之研究 (三)」,國立台灣大學土木研究所 (2001)。
    40.廖建明,「波浪通過潛堤變形之研究」,碩士論文,國立成功大學 (1995)。
    41.劉千,「非線性波通過潛堤之倍頻能量演變」,碩士論文,國立成功大學 (2000)。
    42.溫志中,「修正緩坡方程式之研發與應用」,博士論文,國立成功大學 (2001)。

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE