簡易檢索 / 詳目顯示

研究生: 王裕迪
Wang, Yu-Di
論文名稱: 汲極延伸金氧半電晶體因熱載子造成元件退化的研究
Studies on hot-carrier induced degradation in DEMOS
指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 89
中文關鍵詞: 汲極延伸金氧半電晶體熱載子效應固定電流法測試閘極氧化層
外文關鍵詞: DEMOS, Hot-carrier effect, constant current method, gate oxide
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是用0.35μm製程P通道汲極延伸金氧半場效電晶體元件(DEMOS transistor device) 進行熱載子可靠度研究。針對各參數的退化,分析出其主要退化的機制,並且利用固定電流法測試hot –carrier stress後所產生的介面狀態與氧化層陷入電荷是否對元件的閘極氧化層產生損害,藉此檢測氧化層的完整性。
    首先我們先介紹高壓元件的一些結構與一般MOS的差異與應用,以及為何高壓元件廣泛使用整合在CMOS製程之中。之後將對高壓元件及其運用做基本的描述與介紹,並簡單的介紹何謂熱載子效應與固定電流法的原理與機制。第二章則是介紹實驗中所量測的各種參數,包含量測的方法與步驟,並詳敘stress的方法與其用意。第三章,針對非對稱性的15V P-DEMOS元件,先取得此元件在不同偏壓下的直流特性結果,得知本元件有Kirk Effect產生,且對元件的退化產生重大影響。再接著進行熱載子stress以求得元件的可靠度分析。我們發現元件的線性電流與飽和電流在不同的閘極電壓下都有增加的現象且最大轉導有下降的趨勢,其退化機制可能是熱電子注入造成氧化物陷捕(oxide trap)和熱電洞注入造成的介面狀態產生(interface state generation)因而造成其退化。且元件的退化趨勢與基板電流之間呈現正比的關係。因此ISUB 可當此元件的退化指標,然後利用TCAD模擬軟體 (Technology computer-aided design simulations)嘗試找出其退化原因與位置。並且經由固定電流法的測試,可以得知崩潰電荷(Qbd)與元件的參數退化並沒有直接關聯,主要是受電洞流所影響。
    第四章部分,則是針對另一顆40V P-DEMOS元件,採取相同的量測手法,在stress量測後我們發現元件在通道中或許有中性的界面狀態產生,因此對元件的最大轉導產生退化而臨限電壓則是幾乎沒有退化發生,並且在累増區/鳥嘴區域接面處有大量的電子注入產生捕抓,使的元件的阻抗值下降,且此顆元件其退化趨勢則是與閘極電流呈現正比的關係,因此Ig 可以當此顆元件的退化指標。這與前一顆元件是截然不同的情形。
    最後,則是將實驗做個總結,比較兩顆元件的差異,並提出論文中尚未完成的研究方向,以待將來做更深入的探討及研究。

    This paper is a 0.35μm process with P-channel extended drain MOS transistor (DEMOS transistor device) to measure the hot carrier reliability study. The parameters use to analysis for the degradation of the main degradation mechanism and testing the use of constant current after hot carrier stress generated interface states and oxide charge into whether the gate oxide devices produced damage to detect oxidation layer integrity.
    First we introduce some structure in high voltage difference between the general and application of MOS, and why high-voltage devices widely used in CMOS process integration. After the high voltage devices and its application will do a basic description and a brief background of hot carrier effect and the constant current method of principle and mechanism. The chapter 2 is to introduce various parameters measurement methods and procedures. Then we to describe why to stress the device in detailed. Chapter III, study the asymmetry of the 15V P-DEMOS devices, obtain the device at different DC bias characteristics, we also find the kirk effect will affect device degradation. Then the followed by hot carrier stress measurements in order to obtain the device of reliability analysis. After the stress, we found the linear current and saturation current at different gate voltages have enhanced and the maximum transduction phenomenon of a downward trend, the degradation mechanism may be caused by hot electron injection generate trapping and hot hole injection caused by interface state generation resulting in its degradation. Besides, device degradation and the substrate current demonstrate a positive relationship. Therefore, this device can treat ISUB as a degradation index. And by the constant current method of testing, be able to know Qbd and degradation of device parameters are not directly related, which mainly influenced by the hole current.
    Part IV, is for the other 40V P-DEMOS, to adopt the same methods of measurement. After stress, we also found it maybe have the neutral interface states exist in the channel result in maximum transduction degrade while the threshold voltage is almost no degradation occurred. And electron injection and trapping in the ACC/bird’s beak result in Ron degrade. Its degradation is presented with the gate current is proportional to the relationship, thus Ig can be a degradation indicator. This is totally different from the previous situation.
    Finally, sum up the experiments results and to compare the differences between the two subjects device and proposed thesis research not yet completed, pending the future to do more in-depth discussion and research.

    Abstract(Chinese)……………………………………………………I Abstract(English)…………………………………………………….III Acknowledgements…………………………………………............VI Contents……………………………………………………..........VIII List of Table………………………………………………………X Figure Captions…………………………………………………….XI Chapter 1 Introduction 1 1.1 Introduction of high voltage MOSFET 1 1.2 The structure of DEMOS transistor 2 1.3 Introduction of hot carrier effect 3 1.4 Introduction of constant current stress 4 1.5 About this thesis 5 Chapter 2 measurement & Discussions of Device Characteristics 15 2.1 Introduction 15 2.2 Device description 15 2.3 Measurement Methodology 16 2.3.1 Id-Vd measurement 16 2.3.2 Id-Vg measurement 16 2.3.3 VT extraction 17 2.3.4 Breakdown voltage measurement 18 2.4 Stress methodology……………………………..18 2.5 Summary………………………………………..20 Chapter 3 Analysis of Hot Carrier Degradation Phenomenon and Mechanism in p-Type 15V DEMOS Transistor 33 3.1 Kirk effect 33 3.2 Introduction 34 3.3 Experiments 36 3.4 Results and conclusion 37 3.4.1 Hot carrier stress result 37 3.4.2 TCAD simulation result 39 3.4.3 Constant current stress 42 3.5 Summery 44 Chapter 4 Analysis of Hot Carrier Degradation Phenomenon and Mechanism in p-Type 40High-Voltage DEMOS Transistor 65 4.1 Introduction 65 4.2 Experiment 66 4.3 Mechanisms of degradation 67 4.4 Summery 69 Chapter 5 Conclusion and Future Work 78 5.1 Introduction 78 5.2 Future work 79 References 81

    [1] C. Y. Tsai, et al., “16–60 V rated LDMOS show advanced performance in an 0.72 μm evolution BiCMOS power technology,” in IEDM Tech. Dig., pp. 367-370 (1997).
    [2] V. Parthasarathy, et al., “A 33 V, 0.25 mΩ*cm2 n-channel LDMOS in a 0.65 μm smart-power technology for 20-30 V operation,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 61-64 (1998).
    [3] J. A. Van der Pol, et al., “A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 327-330 (2000).
    [4] T. Terashima, et al., “Multi-voltage device integration technique for 0.5μm BiCMOS and DMOS process,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 331-334 (2000).
    [5] Y. Kawagushi, et al., “0.6 μm BiCMOS-based 15 and 25 V LDMOS for analog applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 169-172 (2001).
    [6] P. Moens, et al., “I3T80: A 0.35 μm based system-on-chip technology for 42 V battery automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 225-228 (2002).
    [7] R. Versari, A. Pieracci, S. Manzini, C. Contiero, and B. Ricco, “Hot-carrier reliability in submicron LDMOS transistors,” IEDM Tech. Dig., pp. 371 (1997).
    [8] R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1228 (1999).
    [9] Y. Rey-Tauriac, J. Badoc, B. Reynard, R. A. Bianchi, D. Lachenal, A. Bravaix, “Hot-carrier reliability of 20V MOS transistors in 0.13 μm CMOS technology,” Microelectronics & Reliability, vol. 45, pp. 1349-1354 (2005).
    [10] A. W. Ludikhuize, M. Slotboom, A. Nezar, N. Nowlin, and R. Brock, “Analysis of hot-carrier-induced degradation and snapback in submicron 50V lateral MOS transistors,” ISPSD, pp. 53 (1997).
    [11] Tahui Wang, Chimoon Huang, P. C. Chou, Steve S.-S. Chung, Tse-En Chang, “Effects of Hot Carrier Induced Interface State Generation in Submicron LDD MOSFET’s,” IEEE Tran. Elect. Dev., Vol. 41, No. 9 (1994).
    [12] S. Aresu, W. De Ceuninck, G. Van den bosch et. al., “Evidence for source side injection hot carrier effects on lateral DMOS transistors,” Microelectronics & Reliability, vol.44, pp. 1621 (2004).
    [13] Philip L. Hower, “Safe Operating Area-a New Frontier in LDMOS Design, ” ISPSD, pp. 1-8 (2002).
    [14] Zhilin Sun, Weifeng Sun, Longxing Shi, “A review of safe operation area,” Microelectronics Journal, pp. 1-7 (2005).
    [15] P. Hower, J. Lin, S. Haynie, S. Paiva, R. Shaw, N. Hepfinger, “Safe operating area considerations in LDMOS transistors,” ISPSD, pp.55 (1999).
    [16] P.L. Hower, J. Lin, and Steve Merchant, “Snapback and safe operating area of LDMOS transistors,” IEDM Tech. Dig., pp. 193-196 (1999).
    [17] L. Labate, S. Manzini, and R. Roggero, “Hot-Hole-Induced dielectric breakdown in LDMOS transistors,” IEEE Trans. Elect. Dev., vol. 50, no. 2, pp. 372 (2003).
    [18] Y. Kamakura, H. Utsunomiya, T. Tomita, K. Umeda, and K. Taniguchi, “Investigations of hot carrier induced breakdown of thin oxides,” IEDM Tech. Dig., Dec., pp. 81-84 (1997).
    [19] Y. Nishioka, Y. Ohji, and T. Ma, “Gate-oxide breakdown accelerated by large drain current in n-channel MOSFET’s,” IEEE Elect. Dev. Lett., vol. 12, pp. 134-136 (1991).
    [20] M. S. Shekar, R. K. Williams, M. Cornell, M.-Y. Luo, and M. Darwish, “Hot electron degradation and unclamped inductive switching in submicron 60-V lateral DMOS,” IRPS, pp. 383, 1998.
    [21] C.T. Huang, Bing-Yue Tsui, Hsu-Ju Liu, and Geeng-Lin Lin, “The impact of high voltage drift N-well and Shallow trench isolation layouts on electrical characteristics of LDMOSFETs”. 2007 IEEE
    [22] C. Y. Chang and S. M. Sze, “ULSI Technology,” (1996).
    [23] Yi Lu and Chih‐Tang Sah, “Two pathways of positive oxide‐charge buildup during electron tunneling into silicon dioxide film,” J. Appl. Phys. 76, 4724 (1994)
    [24] C.-T. Sah, Fundamentals of Solid-State Electronics—Study Guide (World Scientific, Singapore, 1993):, (a) Fig. B2.5(a), p. 411;, (b) Fig. B2.6(b), p. 412;, (c) pathway 13a in Fig. B2.1, p. 396;, (d) Eqs. (411.16D), (411.16I), (411.16A), p. 129;, (e) p. 104, table on hot-hole mean free path (52Ain Si) and optical phonon energy (63.2 meV in Si) (f) bridging oxygen vacancy center in SiO2, Fig. B3.3(a), p. 421, Fig. 3.4, p. 422.
    [25] J. J. Liou, A. Ortiz-Conde and F. Garcia Sanchez, “Extraction of the Threshold Voltage of MOSFETs: an Overview,” IEEE IEDM, pp.31-38 (1997).
    [26] R. A. Chapman et al., “An 0.8 μm CMOS Technology for High Performance Logic Applications,” Tech. Dig. IEDM, pp.362 (1987).
    [27] Stanley Wolf, “Silicon Processing for the VLSI Era,” Volume 3: The Submicron MOSFET (1995).
    [28] T. Y. Chan, C. I. Chiang, and H. Gaw, “New Insight into Hot-Electron-Induced Degradation of n-MOSFETs,” Tech. Dig. IEDM, pp.196 (1988).
    [29] S.M. Sze, “Physics of Semiconductor Device,” Wiley (1981)
    [30] Ben G. Streetman, Sanjay Banerjee, “Solid state electronic device,” 5thed, Prentice Hall (2000)
    [31] Yuan Taur, Tak h. Ning, ”Fundamentals of modern VLSI devices,” Cambridge (1998)
    [32] A.W. Ludikhuize, “Kirk effect limitations in high voltage IC’s,” IEEE, pp.249 (1994)
    [33] 國立成功大學論文 “Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Kuo-Ming Wu.
    [34] S. Manzini and C. Contiero : proc. Int. Symp. Power Semiconductor Devices and ICs, 1996, p. 65.
    [35] P. Mones, G. Van den bosch, C. De Keukeleire, R. Degraeve ,M. Tack, and G. Groeseneken: IEEE Trans. Electron Devices 51(2004)1704
    [36] P. Mones, G. Van den bosch: IEEE Trans. Device Mater. Reliab.6 (2006)349
    [37] K.M. Wu, J.F. Chen, Y.K. Su, J.R. Lee, Y.C. Lin, S.L. Hsu, and J.R. Shih: IEEE Trans Device Mater. Reliab.6 (2006)371
    [38] S.Y. Chen, J.F. Chen, K.M. Wu, J.R. Lee, C.M. Liu, and S.L. Hsu, Jpn. J Appl. Phys.47(2008)2645
    [39] J.F. Chen, J.R. Lee, K.M. Wu, T.Y. Huang, and C.M. Liu: IEEE Electron Device Lett. 29(2008)711
    [40] P. Moens, F. Bauwens, M. Nelson, and M. Tack: Proc. Int. Reliability Physical Symp, 2005, p 555
    [41] T. H. Ning, J. Appl. Phys. 47, 3203(1976)
    [42] Z. A. Weinberg and T.N. Nguyen, J. Appl. Phys.61, 1947(1987)
    [43] J.F. Chen, K.M Wu, K. W. Lin, Y. k. Su, and S.L. Hsu, “Hot-carrier reliability in submicrometer 40V LDMOS transistor with thick gate oxide. “in Proceedings of Int. Reliability Physics Symposium, 2005, pp. 560-564
    [44] C. C. Cheng, J. F. Lin, T. Wang, T.H. Heieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, “Physics and characterization of various hot-carrier degradation model in LDMOS by using a three-region charge-pumping technique,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 3, pp. 358-363,Sep.2006
    [45] S. K. Lee, C. J. Kim, J. H. Kim, Y.C. Choi, H. S. Kang, and C.S. Song, “Optimization of safe-operating-area using two peaks of body-current in submicron LDMOS,” in Proceedings of IEEE Int. Symposium Power Semiconductor Devices and IC’s, 2001, pp. 287-290
    [46] V. Parthasarathy, V. Khemka, and A. Bose, “SOA improvement by a double RESURF LDMOS technique in a power IC technology,” in IEDM Tech. Dig.,2000,pp. 75-78.
    [47] Fumitomo Matsuoka, Hiroshi Iwai, Hiroyuki Hayashida, Kaoru Hama, Toshiaki Toyohima, and Kenji Maeguchi“Analysis of Hot-Carrier-Induced Degradation Mode on pMOSFET’s”, IEEE Transcations on electron device. Vol. 37. No. 6. June (1990)
    [48] C .C. Cheng, J. W. Wu, C. C. Lee, J. H. Shao, and T. Wang, “Hot Carrier Degradation in LDMOS Power Transistors”, IEEE Proceedings of 11st IPFA 2004, Taiwan
    [49] K. M. Wu, J.F .Chen, Y.K. Su, J.R. Lee, Y.C. Lin, S. L. Hsu, and J. R. Shih,” Anomalous reduction of hot-carrier-induced on resistance degradation in n-type DEMOS transistors,” IEEE Trans. Device and Materials Reliability, vol.6, no.3 pp. 371-376, Sep.2006
    [50] S. H. Chen, J. Gong, M. C. Wu, T.Y. Huang, J.F .Huang, R.H. Liou, S.L. Hsu, L.L. Lee, and H.C. Lee, “ Time-dependent drain-and source-series resistance of high-voltage lateral diffused metal-oxide-semiconductor field-effect transistors during hot-carrier stress,” Jpn. J. Appl. Phys, vol 42,pt. 1,no.2A, pp. 409-413, Feb.2003
    [51] J F. Chen, Kuo-Ming Wu, Kaung-Wan Lin, Yan-Kuin Su, and S.L. Hsu, “ Hot-carrier reliability in sub-micrometer 40V LDMOS transistors with thick gate oxide.” IEEE Trans. 2005
    [52] Joseph J. TZOU, Member IEEE, C.C Yao, R. CHEUNG, and HUGO CHAN, Member, IEEE, “ Temperature dependence of charge generation and breakdown in SiO2,” IEEE, 1986.
    [53] D. DiMaria, D. Arnold, and E. Cartier, “Degradation and breakdown of silicon dioxide films on silicon,” Appl. Phys. Lett., vol.61, no. 19, p.2329, 1992
    [54] Y. Tang, C. Chang, S. Haddad, A. Wang, and J. Lin, “Differentiating impacts of hole trapping vs. interface states on TDDB reduction in thin oxide gated diode structure,” Int. Reliability Phys. Symp, p. 262, 1991.
    [55] I. C. Chen, J. Y. Choi, T.Y. Chan, and C. Hu, “ The effect of channel hot carrier stressing on gate-oxide integrity in MOSFETS,” IEEE Trans. Electron Device, vol.35, p. 2253, 1998
    [56] K.R. Mistry, D.B Krakauer, and B.S. Doyle, “Impact snapback induced hole injection on gate oxide reliability of N-MOSFET,” IEEE Electron Device Lett, vol. 11, p.460,1990.
    [57] E. Rosenbaum, R. Rofan, and C. Hu, “Effect of hot carrier injection on n- and p-MOSFET pate oxide integrity,” IEEE Electron Device Lett ,vol. 12,- p. 599, 1991.
    [58] S. Haddad, C. Chang, B. Swaminathan, and J. Lien, “Degradations due to hole trapping in flash memory cells,” IEEE Electron Device Lett.,vol. IO, p. 117, 1989.
    [59]W. Sun, L. Shi, Z. Sun et al., “High-voltage power IC technology with nVDMOS, RESURF pLDMOS, and novel level-shift circuit for PDP scan-driver,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 891–896,Apr. 2006.
    [60] W. Sun, J. Wu, Y. Yi et al., “High-voltage power integrated circuit
    technology using bulk-silicon for plasma display panels data driver IC,”Microelectron. Eng., vol. 71, no. 1, pp. 112–118, Jan. 2004.
    [61] J. Kim, T. M. Roh, S.G.Kimet al., “High-voltage power integrated circuit technology using SOI for driving plasma display panels,” IEEE Trans.Electron Devices, vol. 48, no. 6, pp. 1256–1259, Jun. 2001.
    [62] D. Brisbin, A. Strachan, and P. Chaparala, “ PMOS drain breakdown
    voltage walk-in: A new failure mode in high power BiCMOS application,” in Proc. IEEE 42rd Annu. Int. Reliab. Phys. Symp.. Phoenix, AZ,2004, pp. 265–268.
    [63] J. F. Chen, K.-M. Wu, K.-W. Lin et al., “Hot-carrier reliability in submicrometer 40 V LDMOS transistors with thick gate oxide,” in Proc. IEEE 43rd Annu. Int. Reliab. Phys. Symp., San Jose, CA, Apr. 17–21, 2005, pp. 560–564.
    [64] P. Moens, G. Van den bosch, G. Groeseneken et al., “A unified hot carrier degradation model for integrated lateral and vertical nDMOS transistors,” in Proc. IEEE 15th Int. Symp. Power Semicond. Devices and Ics, Apr.14–17, 2003, pp. 88–91.
    [65] P. Moens, G. Van den bosch, and G. De Keukeleire, “Hot-carrier degradation phenomena in lateral and vertical DMOS transistors,” IEEE Trans.Electron Devices, vol. 51, no. 4, pp. 623–628, Apr. 2004.
    [66] P. Moens, F. Bauwens, and M. Nelson, “Electron trapping and interface trap generation in drain extended pMOS transistors,” in Proc. IEEE 43rd Annu. Int. Reliab. Phys. Symp.. San Jose, CA, 2005, pp. 555–559.
    [67] P. Moens, G. Van den Bosch, D. Wojciechowski et al., “Charge trapping effects and interface state generation in a 40 V lateral resurf Pldmos transistor,” in Proc. 35th Eur. Solid-State Device Res. Conf.. Grenoble,France, 2005, pp. 407–410.
    [68] C.-C. Cheng, J. W Wu, C. C. Lee et al., “Hot carrier degradation in
    LDMOS power transistor,” in Proc. 11th Int. Symp. Phys. and Failure Analysis Integr. Circuits, Jul. 5–8, 2004, pp. 283–286.
    [69] V. O’Donovan, S. Whiston, A. Deignan et al., “Hot carrier reliability of lateral DMOS transistors,” in Proc. IEEE 38th Annu. Int. Reliab. Phys. Symp., Apr. 10–13, 2000, pp. 174–179.
    [70] K. M. Wu, Jone F. Chen, Y. K. Su, J. R. Lee, Y. C. Lin, S. L. Hsu and J. R. Shih, “Anomalous Reduction of Hot-Carrier-Induced ON-Resistance Degradation in n-Type DEMOS Transistors,” IEEE Transactions on Device and Materials Reliability (2006).
    [71] F. Bauwens and P. Moens, “Locating hot carrier injection in n-type DeMOS transistors by Charge Pumping and 2D device simulations,” Microelectronics & Reliability, vol.44, pp. 1625-1629

    下載圖示 校內:2015-07-07公開
    校外:2015-07-07公開
    QR CODE