| 研究生: |
施岳錠 Shih, Yueh-Ting |
|---|---|
| 論文名稱: |
以最少的假說與有限數據測量IBM量子電腦的局域可控性 Testing local addressability in IBM quantum computers with minimal assumptions and finite data |
| 指導教授: |
梁永成
Liang, Yeong-Cherng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 量子資訊 、量子電腦 、與設備無關 、有限數據 、串音現象 、貝爾不等式 、假設檢定 |
| 外文關鍵詞: | Quantum information, quantum computer, device-independent, finite statistics, cross-talk, Bell inequalities, hypothesis testing |
| 相關次數: | 點閱:147 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
裨益於與設備無關的協定這類嶄新的資訊處理方法,人們得以在對於實驗裝置要求最少的假設前提下,做出分析並取得結果。我們採用張博士[1]及其與梁教授[2]研究的Prediction-based-ratio (PBR)分析方法用於檢測IBMQ量子電腦。確切地說,我們在這些系統上進行CHSH貝爾實驗,再以假設檢定的統計工具分析蒐集到的實驗數據,是否違反⌜無串音條件⌟,亦即存在⌜串音現象⌟。相較於現有用於檢測量子系統中串音現象的方法,這個分析方法只需要⌜最少的⌟假設。這些假設包含對於實驗系統的以及理論的。特別是,我們的分析不需要⌜獨立同分佈⌟的假設。這個假設雖然被廣為使用,但大多數系統卻通常沒有(很多是沒辦法)經過檢查保證這個假說成立。因此我們的方法能更純粹的從實驗中蒐集到的數據分析系統的局域可控性。
Device-independent protocols are a novel type of information processing protocol where only minimal trust or characterization of the employed devices is needed. By adapting the prediction-based ratio (PBR) method first proposed by Zhang et al. [1] and further analyzed in Liang and Zhang [2], we perform no signaling tests on some of the quantum computers offered by IBM Quantum Experience.
More precisely, we carry out Clauser-Horne-Shimony-Holt-type Bell tests on these systems and a subsequent hypothesis-testing—based on the raw data accrued during these tests—to determine the likelihood that the data obtained is incompatible with an underlying model that is no signaling, i.e., with crosstalk. The strength of the present approach, in contrast with other commonly adopted benchmarking techniques, is that “minimal assumptions are needed”. In particular, the usually
unjustified assumption of independent and identically-distributed (i.i.d.) trials is not required in our analysis. In short, our perspective on characterizing local addressability tells a story based only on what is “observed” in real labs.
[1] Y. B. Zhang, S. Glancy, and E. Knill. Asymptotically optimal data analysis for rejecting local realism. Physical Review A, 84:062118, Dec 2011.
[2] Y. C. Liang and Y. B. Zhang. Bounding the plausibility of physical theories in a device-independent setting via hypothesis testing. Entropy, 21(2), 2019.
[3] F. Arute, K. Arya, R. Babbush, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574:505–510, 2019.
[4] IBM Quantum. https://quantum-computing.ibm.com/, 2021.
[5] Rigetti computing. https://qcs.rigetti.com/, 2020.
[6] Ionq. https://ionq.com/, 2017–2022.
[7] D-wave systems inc. https://www.dwavesys.com/, 2022.
[8] H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X.
Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You,
Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan. Quantum computational advantage using photons. Science, 370(6523):1460–1463, 2020.
[9] D. P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11):771–783, 2000.
[10] V. Scarani. The device-independent outlook on quantum physics (lecture notes on the power of Bell’s theorem). 03 2013.
[11] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. B. Kohout. Detecting crosstalk errors in quantum information processors. Quantum, 4:321, September 2020.
[12] E. C. G. Sudarshan, P. M. Mathews, and Jayaseetha Rau. Stochastic dynamics of quantum-mechanical systems. Physical Review, 121:920–924, Feb 1961.
[13] K. Kraus, A. B ̈ohm, J. D. Dollard, and W. H. Wootters. States, Effects, and Operations. Lecture Notes in Physics. Springer Berlin, Heidelberg, 1983.
[14] C. Y. Hsieh, M. Lostaglio, and A. Ac ́ın. Quantum channel marginal problem. Physical Review Research, 4:013249, Mar 2022.
[15] I. L. Chuang and M. A. Nielsen. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455–2467, November 1997.
[16] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White. Ancilla-Assisted Quantum Process Tomography. Physical Review Letters, 90(19):193601, May 2003.
[17] M. Mohseni, A. Rezakhani, and D. Lidar. Quantum process tomography: Resource analysis of different strategies. Physical Review A, 77, 03 2007.
[18] J. Emerson, R. Alicki, and K. ̇Zyczkowski. Scalable noise estimation with random unitary operators. Journal of Optics B: Quantum and Semiclassical Optics, 7(10):S347–S352, sep 2005.
[19] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Physical Review A, 77:012307, Jan 2008.
[20] E. Magesan, J. M. Gambetta, and J. Emerson. Robust randomized benchmarking of quantum processes. 2010.
[21] E. Magesan, J. M. Gambetta, and J. Emerson. Scalable and robust randomized benchmarking of quantum processes. Physical Review Letter, 106:180504, May 2011.
[22] E. Magesan, J. M. Gambetta, and J. Emerson. Characterizing quantum gates via randomized benchmarking. Physical Review A, 85:042311, Apr 2012.
[23] O. D. Matteo. A short introduction to unitary 2-designs. 2014.
[24] M. Horodecki, P. Horodecki, and R. Horodecki. General teleportation channel, singlet fraction, and quasidistillation. Physical Review A, 60:1888–1898, Sep 1999.
[25] M. Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Physics Letters A, 303:249–252, 10 2002.
[26] J. M. Gambetta, A. D. C ́orcoles, S. T. Merkel, B. R. Johnson, John A. Smolin, Jerry M. Chow, Colm A. Ryan, Chad Rigetti, S. Poletto, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. Characterization of addressability by simultaneous randomized benchmarking. Physical Review Letter, 109:240504, Dec 2012.
[27] A. Veitia, M.P. da Silva, R. B. Kohout, and S.J. van Enk. Macroscopic instructions vs microscopic operations in quantum circuits. Physics Letters A, 384(6):126131, 2020.
[28] A. Veitia and S. Enk. Testing the context-independence of quantum gates. Quantum Information and Computation, 20:1304–1352, 12 2020.
[29] K. Rudinger, T. Proctor, D. Langharst, M. Sarovar, K. Young, and R. B. Kohout. Probing context-dependent errors in quantum processors. Physical Review X, 9:021045, Jun 2019.
[30] J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer New York, NY, 2003.
[31] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics, 9(1):60 – 62, 1938.
[32] A. Einstein. Concerning an heuristic point of view toward the emission and transformation of light. Annalen der Physik, 17:132–148, 1905.
[33] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47:777–780, May 1935.
[34] G. J. v. Neumann. Mathematische grundlagen der quantenmechanik. Monatshefte f ̈ur Mathematik und Physik, 40:A31–A32, 2013.
[35] G. Hermann. Between Physics and Philosophy. Studies in History and Philosophy of Science. Springer Dordrecht, 2016.
[36] G. Hermann. Die naturphilosophischen grundlagen der quantenmechanik. Naturwissenschaften, 23:718–721, 1935.
[37] J. S. Bell. On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38:447–452, Jul 1966.
[38] A. M. Gleason. Measures on the closed subspaces of a hilbert space. Journal of Mathematics and Mechanics, 6(6):885–893, 1957.
[39] J. S. Bell. On the impossible pilot wave. Foundations of Physics, 12:989–999, 1982.
[40] D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden” variables. i. Physical Review, 85:166–179, Jan 1952.
[41] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195–200, Nov 1964.
[42] D. Bohm and Y. Aharonov. Discussion of experimental proof for the paradox of einstein, rosen, and podolsky. Physical Review, 108:1070–1076, Nov 1957.
[43] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local hidden-variable theories. Physical Review Letter, 23:880–884, Oct 1969.
[44] R. F. Werner. Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Physical Review A, 40:4277–4281, Oct 1989.
[45] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom. Foundations of Physics, 24(3):379–385, March 1994.
[46] N. Gisin. Bell’s inequality holds for all non-product states. Physics Letters A, 154(5):201–202, 1991.
[47] B. S. Cirel’son. Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics, 4:93–100, Mar 1980.
[48] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts. Nonlocal correlations as an information-theoretic resource. Physical Review A, 71:022101, Feb 2005.
[49] A. Ac ́ın, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani. Device-independent security of quantum cryptography against collective attacks. Physical Review Letters, 98:230501, Jun 2007.
[50] A. R ́enyi. On measures of entropy and information. Berkeley Symposium on Mathematical Statistics and Probability, 4.1:547–561, 1961.
[51] I. Sason and S. Verd ́u. f-divergence inequalities via functional domination. In 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), pages 1–5, 2016.
[52] J. L. W. V. Jensen. Sur les fonctions convexes et les in ́egalit ́es entre les valeurs moyennes. Acta Mathematica, 30(none):175 – 193, 1906.
[53] P. S. Lin, D. Rosset, Y. B. Zhang, J. D. Bancal, and Y. C. Liang. Device-independent point estimation from finite data and its application to device-independent property estimation. Physical Review A, 97:032309, Mar 2018.
[54] B. Hensen, H. Bernien, A. E. Dr ́eau, and et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Berkeley Symposium on Mathematical Statistics and Probability, 526:682–686, 2015.
[55] C. ABellan, W. Amaya, D. Mitrani, V. Pruneri, and M. Mitchell. Generation of fresh and pure random numbers for loophole-free Bell tests. Physical Review Letters, 115, 06 2015.
[56] R. M. Mnatsakanov. Hausdorff moment problem: Reconstruction of distributions. Statistics & Probability Letters, 78(12):1612–1618, 2008.
[57] R. M. Mnatsakanov. Hausdorff moment problem: Reconstruction of probability density functions. Statistics & Probability Letters, 78(13):1869–1877, 2008.
[58] F. Hausdorff. Summationsmethoden und momentfolgen. i. Mathematische Zeitschrift, 9:74–109, 03 1921.
[59] F. Hausdorff. Summationsmethoden und momentfolgen. ii. Mathematische Zeitschrift, 9:280–299, 09 1921.