簡易檢索 / 詳目顯示

研究生: 陳品君
Chen, Pin-Chun
論文名稱: 具各種圓管排列之板鰭管式熱交換器的熱傳特性研究
Study of Heat Transfer Characteristics of Plate Fin and Tube Heat Exchangers with Various Tube Arrangements
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 逆算法實驗方法數值模擬板鰭管式熱交換器熱傳及流體流動特性
外文關鍵詞: Inverse scheme, Experimental method, Plate finned-tube heat exchangers, Heat transfer and flow fluid characteristics
相關次數: 點閱:201下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以逆算法及計算流體力學商業套裝軟體搭配實驗方法來探討板鰭管式熱交換器之熱傳及流體流動特性,並探討鰭片間距、風速與管徑對所得結果之影響。由於鰭片上的熱傳係數可能為不均勻分佈,故將鰭片劃分為數個小區域。之後,利用結合有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片上之熱傳係數。為了求得較正確之板鰭管式熱交換器的熱傳及流體流動特性數值,利用計算流體力學軟體配合適當之流動模式及網格格點數所求得於各量測點之鰭片溫度及鰭片上之熱傳係數須盡可能分別接近實驗溫度量測值、逆算結果及先前之結果。本文結果顯示對於管徑為27 mm,由RNG k-ε紊流模式所求得結果較為準確;對於2 mm之小管徑,則由層流模式所求得結果較為準確。這意味著流動模式對所求得結果之影響是不忽視的,且所選取之網格點數可能須隨著風速的增快而增加。因此本文以不同之流動模式搭配適當的格點數求得鰭片溫度、熱傳係數及空氣之速度、溫度與壓力分布。此外,本文之結果亦顯示對應大管徑之熱傳係數、摩擦係數f與壓降皆大於對應小管徑之值,且大管徑之摩擦係數f高於小管徑之摩擦係數約153%至277%。

    The present study applies the inverse method and computational fluid dynamics commercial software in conjunction with the experimental method to predict the heat transfer and fluid flow characteristics of plate-finned tube heat exchangers. The effects of parameters such as air velocity, fin spacing and tube diameter are examined. Due to the heat transfer coefficient on the fin is non uniform, the fin is divided into several sub-regions. Later, the inverse method applies finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. More accurate results can be obtained if the heat transfer coefficient is close to the inverse results and matches the existing correlations. The results obtained using the RNG k-ε turbulence flow model for the tube diameter being 27 mm and the laminar model for the tube diameter being 2 mm is more accurate. It means the importance of flow model is negligible, and the number of grid points may also need to change with the air velocity. Therefore, the present study applies different flow models with appropriate grid points to obtain the fin temperature, heat transfer coefficient, air velocity and pressure distribution. Furthermore, the heat transfer coefficient, friction factor and the pressure drop of the big tube diameter is larger than the small tube diameter. The increases friction factor is about 153% to 277%.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的 5 1-4 研究重點與本文架構 6 第二章 理論分析與數值逆運算法 8 2-1 簡介 8 2-2 數學模式 8 2-3 數值分析方法 11 2-4 逆向熱傳導問題 13 2-5 本文之物理量 13 2-6 溫度量測誤差的影響 14 第三章 數值模擬分析 18 3-1 簡介 18 3-2 基本假設 18 3-3 統御方程式 19 3-3-1 層流(Laminar)模式 19 3-3-2 零方程(Zero equation)模式 20 3-3-3 標準k-ε紊流模式 20 3-3-4 RNG k-ε紊流模式 22 3-4 邊界條件 23 3-5 求解方法與程序 24 第四章 實驗操作 27 4-1 簡介 27 4-2 實驗設備 27 4-3 實驗步驟 29 第五章 結果與討論 41 5-1 實驗結果與分析 41 5-1-1 鰭片間距的影響 42 5-1-2 正向風速的影響 42 5-1-3 管徑的影響 43 5-1-4 與相關文獻比較 44 5-2 模擬結果與分析 47 5-2-1 流動模式之選定 48 5-2-2 計算域與網格測試 49 5-2-3 數值模擬流場分析 50 第六章 綜合結論與未來展望 106 6-1 實驗與數值模擬結果 106 6-2 綜合結論 107 6-3 未來發展方向與建議 107 參考文獻 108

    [1] F.E.M. Saboya, E.M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations”, ASME J. Heat Transfer, Vol.96, pp.265-272, 1974.
    [2] T.V. Jones, C.M.B. Russell, “Efficiency of rectangular fins”, SME/AIChE National Heat Transfer Conference, Orlando, Florida, pp.27-30, 1980.
    [3] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, “Performance of one and two-row tube and plate fin heat transfer”, ASME J. Heat Transfer, Vol.106, pp.627-632, 1984.
    [4] Rich, D.G., “The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.79, Part 2, pp.137-145, 1973.
    [5] Rich, D.G., “The Effect of the Number of Tube Rows on the Heat Transfer Performance of Smooth Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.81, Part 1, pp.307-317, 1975.
    [6] F.C. McQuiston, “Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surface”, ASHRAE Transactions, Vol.84, pp.294-308, 1978.
    [7] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, “Performance of one and two-row tube and plate fin heat transfer”, ASME J. Heat Transfer, Vol.106, pp.627-632, 1984.
    [8] Gray, D. L., and Webb, R. L., “Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins”, Proc. 9th Int. Heat Transfer Conference, San Francisco, U.S.A., 1986.
    [9] C.J. Chen, T.S. Wung, “Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part II—Heat Transfer Analysis”, Journal of Heat Transfer, Vol.111, pp.641-648, 1989.
    [10] J.Y. Jang, M.C. Wu, W.J. Chang, “Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.39, pp.3057-3066, 1995.
    [11] L.A.O. Rocha, F.E.M. Saboya, J.V.C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers”, Int. J. Heat and Fluid Flow, Vol.18, pp.247-252, 1997.
    [12] S.M. Saboya, F.E.M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers”, Experimental Thermal and Fluid Science, Vol.24, pp.67-75, 2001.
    [13] H. Ay, J.Y. Jang, J.N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography”, Int. J. Heat Mass Transfer, Vol.45, pp.4069-4078, 2002.
    [14] H.T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.49, pp.3034–3044, 2006.
    [15] H.T. Chen, J. C. Chou, H. C. Wang, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings”, Int. J. Heat Mass Transfer, Vol.50, pp.45–57, 2007.
    [16] C.H. Huang, I. C. Yuan, H. Ay, “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers”, Int. J. Heat Mass Transfer, Vol.52, pp.3057-3066, 2009.
    [17] Wang, C.C., Chi, K.U., Chang, C. J. “Heat and mass transfer for plain fin-and-tube heat exchangers with and without hydrophilic coating”, Int. J. Heat Mass Transfer, Vol.43, pp.2692-2700, 1998
    [18] Wang, C.C., Chi, K.U., Chang, C.J. “Heat transfer and friction characteristics of plain fin-and-tube heat exchanger: part1: new experimental data”, Int. J. Heat Mass Transfer, Vol.43, pp.2692-2700, 2000a
    [19] Wang, C.C., Chi, K.U., Chang, C.J., “Heat transfer and friction characteristics of plain fin-and-tube heat exchanger: part2: correlation”, Int. J. Heat and Mass Transfer, Vol.43, pp.2692-2700, 2000b
    [20] Y.Q. Wang, L.A. Penner, S.J. Ormiston, “Analysis of laminar forced convection of a for crossflow in banks of staggered tubes”, Numerical Heat Transfer A, Vol.38, pp. 819–845, 2000
    [21] Y.H. Kim, Y.C. Kim, “Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch”, Int. J. Refrigeration, Vol.28, pp.851–858, 2005.
    [22] L.H. Tang, M. Zeng, Q.W. Wang, “Experimental and numerical investigation on a-side performance of fin-and-tube heat exchangers with various fin patterns”, Experimental Thermal and Fluid Science, Vol.33, pp.818–827, 2009.
    [23] J.Y. Kim, T.H. Song, “Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results”, Int. J. Heat Mass Transfer, Vol.46, pp. 3051–3059, 2003.
    [24] R.S. Matos, J.V.C. Vargas, T.A. Laursen, A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection”, Int. J. Heat Mass Transfer, Vol.47, pp.1347–1359, 2004.
    [25] G. Xie, Q. Wang, B. Sunden, “Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows” Appl. Therm. Eng., Vol.29, pp. 1-16, 2009.
    [26] G. Xie, B. Sunden, Q. Wang, L. Tang, “Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks”, Int. J Heat Mass Transfer, Vol.52, pp.2484–2497, 2009.
    [27] R. Borrajo-Peláez, J. Ortega-CasanoVa, J.M. Cejudo-López, “A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger”, Appl. Therm. Eng., Vol.30, pp.1608–1615, 2010.
    [28] A. Bejan, “Heat Transfer” , John Wiley & Sons, New York, pp. 53-62, 1993.
    [29] W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, “Handbook of Heat TRANSFER”, 3rd ed., McGraw-Hill, New York, NY, 1988.
    [30] B.E. Launder, A.D. Spalding, “Mathematical Method of Turbulence, Academic, London”, pp.3-51, 1972.
    [31] V. Yakhot, S.A. Orszag, “Renormalization group analysis of turbulence, J. Sci. Computing”, Vol.1, pp.3-51, 1986.
    [32] W. Elenbaas, “Heat dissipation of parallel plates by free convection”, Physica, Vol.9, pp.1-28, 1942.
    [33] F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, “Fundamentals of Heat and Mass Transfer”, John Wiley & sons (Asia), New York, pp.8, 2007.
    [34] E.M. Sparrow, J.M. Ramsey, “Heat transfer and pressure drop for staggered wall-attached array of cylinders with tip clearance”, Int. J. Heat Mass Transfer, Vol. 21, pp.1369–1377, 1978.
    [35] 呂致翰,“流動模式對圓管為交錯排列之板鰭圓管熱交換器的熱傳效能影響”, 成功大學機械工程研究所碩士論文, 2013。
    [36] 黃堯聖,“管徑對雙排板鰭管式熱交換器之熱傳特性的影響,” 成功大學機械工程研究所碩士論文, 2014。

    下載圖示 校內:2020-08-05公開
    校外:2020-08-05公開
    QR CODE