| 研究生: |
陳彥辰 Chen, Yen-chen |
|---|---|
| 論文名稱: |
相異親水性元件表面與流動影響之研究 Flow Analysis on Surface with Different Hydrophilicity |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 表面張力 、三氯十八矽烷 、親水性 |
| 外文關鍵詞: | surface tension, hydrophilicity, OTS |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,半導體製程與微製造技術不斷進步,已有能力大量快速的批次生產元件。相對地,組裝技術則仍然停留在序列式之技術,如抓放技術(pick and place)。因此,可以同步組裝大量元件之流體自我技術為近期研究發展之重點。
本研究利用OTS進行玻璃表面之改質,使親水性玻璃之表面具有疏水性之圖樣,藉由流場之觀察,對疏水性表面對於流場之影響進行分析。
實驗結果顯示,(1)利用OTS進行表面之改質具有SAM形成時間短、改質速度較快之優勢。(2)而疏水區域與親水區域界面存有界面力量,此力量會驅使水流往親水區移動,疏水區之面積越大此現象越明顯,且壁面之水流由於邊界層效應將較難以克服此界面力,因此組裝之位置應避免位於流道之壁面。(3)疏水區較大之情況,可以阻隔水流之能力越強。被疏水區包圍之親水區面積越大,能夠容納之水量越多。(4)整齊排列之疏水性矩陣可將水滴限制於親水區,間隔為0.5cm之矩陣,親水區可以累積至高0.43cm,間隔為0.3cm之疏水性矩陣,水滴可累積至0.38cm。
Recently, the rapid advances in silicon processing and microelectromechanical systems have made it possible to product very large numbers of very small components at very low cost in massively parallel batches. In contrast, assembly remains a mostly serial technique (i.e., pick and place). Then, the development of Fluidic self-assembly (FSA) which can assemble massive micro-components spontaneously in parallel batches becomes more and more attractive.
This study presents an analysis of fluid flowing through hydrophobic and hydrophilic surface. The surface of glass is patterned by OTS to form hydrophobic region.
The interface between hydrophobic and hydrophilic region exist force blocking the flow of water through the hydrophobic region. This phenomenon becomes more apparent as the area of hydrophobic zoom is bigger. It is more difficult for the flow of water near the wall of channel to overcome the force produced between the interfaces because of boundary condition. Then, settling the assembly process in the middle of flow channel is supposed to improve the yield of this technique.
[1] R. S. Fearing, “Survey of sticking effects for micro parts handling,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburg, PA, pp. 212–217, 1995.
[2] M. Cohn, K. F. Böhringer, J. M. Noworolski, A. Singh, C. G. Keller, K. Y. Goldberg, and R. T. Howe, “Microassembly technologies for mems,” in Proc. SPIE Micromachining and Microfabrication, pp. 2–16, Sept. 20–22 1998.
[3] K. F. Böhringer and R. S. Fearing, “Microassembly,” in The Handbook of Industrial Robotics, 2“ ed., pp. PP. 1045–1066, John Wley & Sons, 1999.
[4] A. S. Holmes and S. M. Saidam, “Sacrificial layer process with laser-driven release for batch assembly operations,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 416–422, 1998.
[5] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science, vol. 295, pp. 2418–2421, May 2002.
[6] . P. N. Nenad Ban, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 å resolution,” Science, vol. 289, pp. 905–920, August 2000.
[7] J. D. Hartgerink, E. Beniash, and S. I. Stupp, “Self-assembly and mineralization of peptide-amphiphile nanofibers,” Science, vol. 294, pp. 1684–1688, 2001.
[8] H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, and G. M. Whitesides, “Fabrication of a cylindrical display by patterned assembly,” Science, vol. 296, p. 323 to 325, April 2002.
[9] D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, “Forming electrical networks in three dimensions by self-assembly,” Science, vol. 289, no. 18, pp. 1170–1172, 2000.
[10] D. H. Gracias, V. Kavthekar, J. C. Love, K. E. Paul, and G. M. Whitesides, “Fabrication of micrometer-scale, patterned polyhedra by self-assembly,” Advanced Materials, vol. 14, pp. 235–238, February 2002.
[11] T. D. Clark, J. Tien, D. C. Duffy, K. E. Paul, and G. M. Whitesides, “Self-assembly of 10-micrometer-sized objects into ordered three-dimensional arrays,” Journal of the American Chemical Society, vol. 123, pp. 7677–7682, 2001.
[12] R. C. McPhedram, N. A. Nicorovici, D. R. McKenzie, L. C. Botten, A. R. Parker, and G. W. Rouse, “The sea mouse and the photonic crystal,” Australian Journal of Chemistry, vol. 54, pp. 1–4, 2001.
[13] A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature, vol. 385, pp. 321–324, January 1997.
[14] B. Gates and Y. Xia, “Photonic crystals that can be addressed with an external magnetic field,” Advanced Material, vol. 13, no. 21, pp. 1605–1608, 2001.
[15] H.-J. J. Yeh and J. S. Smith, “Fluidic self-assembly for the integration of gaas light-emitting diodes on si substrates,” IEEE Photonics Technology Letters, vol. 6, no. 6, pp. 706–708, 1994.
[16] H. Onoe, K. Matsumoto, , and I. Shimoyama, “Three-dimensional micro-self-assembly using hydrophobic interaction controlled by self-assembled monolayers,” Journal of Microeletcromechanical Systems, vol. 13, no. 4, pp. 603–611, 2004.
[17] A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimetre-scale components,” Nature, vol. 386, pp. 162–164, March 1996.
[18] J. Tien, T. L. Breen, and G. M. Whitesides, “Crystallization of millimeter-scale objects with use of capillary forces,” Journal of the American Chemical Society, vol. 120, pp. 12670–12671, 1998.
[19] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, and G. M. Whitesides, “Design and self-assembly of open, regular, 3d mesostructures,” Science, vol. 284, pp. 948–951, May 1999.
[20] C. D. Bain and G. M. Whitesides, “Formation of monolayers by the coadsorption of thiols on gold: Variation in the length of the alkyl chain,” Journal of the American Chemical Society, vol. 111, pp. 7164–7175, 1989.
[21] P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. a new method of constructingpure or mixed monolayers,” Langmuir, vol. 7, pp. 1647–1651, 1991.
[22] Y.-H. Ye, T. S. Mayer, I.-C. Khoo, I. B. Divliansky, N. Abrams, and T. E. Mallouk, “Self-assembly of three-dimensional photonic-crystals with air-core line defects,” Journal of Materials Chemistry, vol. 12, pp. 3637–3639, 2002.
[23] A. K. Verma, M. A. Hadly, H.-J. Yen, and J. S. Smith, “Fluidic self-assembly of silicon microstructures,” in Proceedings. 45th Electronic Components and Technology Conference,, (Las Vegas, NV, USA), pp. 1263–1268, May 1995.
[24] J. J. Talghader, J. K. Tu, and J. S. Smith, “Integration of fluidically self-assembled optoelectronic devices using a silicon-based process,” IEEE Photonics Technology Letters, vol. 7, pp. 1321–1323, 1995.
[25] J. K. Tu, J. J. Talghader, M. A. Wadley, and J. S. Smith, “Fluidic self-assembly of ingaas vertical cavity surface emitting lasers onto silicon,” Electronics Letters, vol. 31, pp. 1448–1449, 17th August 1995.
[26] J. S. Smith, “High density,low parasitic direct integration by fluidic self assembly (fsa),” Electro Devices Meeting, IEDM Technical Digest, pp. 201–204, Dec 2000.
[27] K. F. Böhringer, K. Goldberg, M. Cohn, R. T. Howe, and A. Pisano, “Parallel microassembly with electrostatic force field,” in Proc. 1998 IEEE Conf. Robotics Automation, Leuven, Belgium, pp. 1204–1211, May 1998.
[28] A. Terfort and G. M. Whitesides, “Self-assembly of an operating electrical circuit based on shape complementarity and the hydrophobic effect,” Advanced Materials, vol. 10, no. 6, pp. 470–473, 1998.
[29] M. Weck, I. S. Choi, N. L. Jeon, and G. M. Whitesides, “Assembly of mesoscopic analogues of nucleic acids,” Journal of the American Chemical Society, vol. 122, pp. 3546–3547, 2000.
[30] D. Qin, Y. Xia, B. Xu, H. Yang, C. Zhu, and G. M. Whitesides, “Fabrication of ordered two-dimensional arrays of micro- and nanoparticles using patterned self-assembled monolayers as templates,” Advanced Materials, vol. 11, no. 17, pp. 1433–1437, 1999.
[31] U. Srinivasan, R. T. Howe, and D. Liepmann, “Fluidic microassembly using patterned self-assembled monolayers and shape matching,” in Proc. 1999 Int. Conf. on Solid-State Sensors and Actuators, pp. 1170–1173, June 7-10 1999.
[32] U. Srinivasan, M. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirrors onto surface micromachined actuators,” in IEEE/LEOS International Conference on Optical MEMS, pp. 59–60, August 2000.
[33] U. Srinivasan, M. A. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirrors onto microactuators using capillary forces,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, January 2002.
[34] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary forces,” Journal of Microeletcromechanical Systems, vol. 10, no. 1, pp. 17–24, 2001.
[35] I. T. H. M. Karen L. Scott, Member, H. Yang, H. Singh, R. T. Howe, and A. M. Niknejad, “High-performance inductors using capillary based fluidic self-assembly,” Journal of Microelectromechanical Systems, vol. 13, pp. 300–309, April 2004.
[36] X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multi-batch self-assembly of micro devices,” tech. rep., Department of Electrical Engineering, University of Washington, Box 352500 Seattle, Washington 98195-2500, 2002.
[37] X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multibatch self-assembly of microdevices,” Journal of Microelectromechanical Systems, vol. 12, pp. 117–127, april 2003.
[38] X. Xiong, K. Wang, and K. F. Böhringer, “From micro-patterns to nano-structures by controllable colloidal aggregation at air-water interface,” in IEEE International Conference on Micro Electro Mechanical Systems(MEMS’04), pp. 621–624, 2004.
[39] S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilaneson silicon substrates,” Langmuir, vol. 5, pp. 1074–1087, 1989.
[40] H. 0.Finklea, L. R. Robinson, A. Blackburn, and B. Richter, “Formation of an organized monolayer by solution adsorption of octadecyltrichlorosilane on gold electrochemical proper ties and structural characterization,” Langmuir, vol. 2, pp. 239–244, 1986.
[41] M. Takizawa, Y.-H. Kim, and T. Urisu, “Deposition of dppc monolayers by the langmuir-blodgett method on sio2 surfaces covered by octadecyltrichlorosilane self-assembled monolayer islands,” Chemical Physics Letters, vol. 385, pp. 220–224, 2004.