| 研究生: |
黎鴻君 Le, Hong-Quan |
|---|---|
| 論文名稱: |
透過選擇性 SfM 飛行路徑與商用現成無人機,提升林下冠層森林結構建模 Improving Under-Canopy Forest Structure Modeling Through Selective SfM Flight Patterns Using a Commercial Off-The-Shelf UAV |
| 指導教授: |
哈里森約翰
F. Harrison, John |
| 學位類別: |
碩士 Master |
| 系所名稱: |
其他 - 全校永續跨域國際碩士學位學程 International Master's Program in Interdisciplinary Sustainability Studies |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 結構動作影像測量 、無人飛行器影像 、林下層評估 、林下層特徵化 、森林清查 、點雲分析 |
| 外文關鍵詞: | Structure-from-motion, UAV imagery, under-canopy assessment, understory characterization, forest inventory, point cloud analysis |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究調查多高度無人機(UAV)結構從動(SfM)攝影測量是否能從樹冠頂部到林下細節捕捉全面的森林結構。中心假設是超低飛行在地面上方提供對森林莖幹、下層枝條和地面植被的直接視覺存取,而這些在傳統高空調查中無法獲得。在台南平石公園的四次序列飛行中,採集121張照片,通過Agisoft Metashape處理,在四個高度層生成2.85億個3D點。結果顯示:高空樹冠(>50 m)產生2140萬個點,重投影誤差為0.310像素;中間樹冠(~30 m)產生最高密度(1.696億個點,0.319像素誤差);亞樹冠(8-11 m)表現極差,僅420萬個點,誤差7.77像素,原因是葉面密度、風不穩定性和重複紋理;超低林下(2-3 m)交付8990萬個點,誤差最低(0.169像素),成功捕捉單個莖幹、枝條和地面特徵。研究建立了一個垂直信息層級,其中高空飛行表徵樹冠宏觀結構和樹冠細節,超低飛行獨特地提供林下存取。雙高度策略(高空+超低)比四層更具成本效益。Align中檔平台(約美元2,500-3,000)展現了操作限制,但在調查設計考慮平台限制時成功生成了研究品質結果。研究結果確認多高度UAV SfM對詳細森林表徵在中等成本下可行,林下操作提供從高空視角無法存取的獨特信息,策略性高度選擇比在所有高度採集數據更重要。這種成本可及的方法為森林監測提供了昂貴LiDAR的實用替代方案。
This study investigates whether multi-altitude unmanned aerial vehicle (UAV) structure-from-motion (SfM) photogrammetry can capture comprehensive forest structure from canopy crowns to understory detail. The central hypothesis is that ultra-low flights above ground level provide direct visual access to forest stems, lower branches, and ground vegetation inaccessible from conventional high-altitude surveys. Four sequential flights at Pingshi Park, Tainan, acquired 121 photographs processed through Agisoft Metashape to generate 285 million 3D points across four altitude layers. Results show: high-altitude canopy (>50 m) generated 21.4 million points with 0.310 pix reprojection error; intermediate canopy (~30 m) yielded the highest density (169.6 million points, 0.319 pix error); sub-canopy (8–11 m) severely underperformed with 4.4 million points and 7.77 pix error due to foliage density, wind instability, and repetitive texture; and ultra-low under-canopy (2–3 m) delivered 89.9 million points with the lowest error (0.169 pix), successfully capturing individual stems, branches, and ground features. The study establishes a vertical information hierarchy where high-altitude flights characterize canopy macrostructure, crown detail, and ultra-low flights uniquely provide understory access. A two-altitude strategy (high + ultra-low) is more cost-effective than four layers. The Align mid-range platform (~USD 2,500–3,000) exhibited operational limitations but successfully produced research-quality results when survey design accounted for platform constraints. The findings confirm that multi-altitude UAV SfM is viable for detailed forest characterization at intermediate cost, that under-canopy operations deliver unique information inaccessible from high-altitude perspectives, and that strategic altitude selection is more important than acquiring data at all altitudes. This cost-accessible approach offers a practical alternative to expensive LiDAR for forest monitoring.
Apostol, B., Chivulescu, S., Ciceu, A., Petrila, M., Pascu, I.-S., Apostol, E. N., . . . Badea, O. (2018). Data collection methods for forest inventory: a comparison between an integrated conventional equipment and terrestrial laser scanning. Annals of Forest Research, 189-202.
Balestra, M., Marselis, S., Sankey, T., Cabo, C., Liang, X., Mokroš, M., . . . Vega, C. (2024). LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review, Current Forestry Reports, 10, 281–297. In.
Banerjee, T., Heilman, W., Goodrick, S., Hiers, J. K., & Linn, R. (2020). Effects of canopy midstory management and fuel moisture on wildfire behavior. Scientific Reports, 10(1), 17312. doi:10.1038/s41598-020-74338-9
Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., . . . Taki, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26(13), 3005-3035.
Cao, H., You, D., Ji, D., Gu, X., Wen, J., Wu, J., . . . Zhang, H. (2023). The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF. Remote Sensing. doi:10.3390/RS15205000
Chen, C., Yan, G., Schmid, B., Li, Y., Bongers, F. J., Bruelheide, H., . . . Liu, X. (2025). Understory shrub diversity: equally vital as overstory tree diversity to promote forest productivity. National Science Review, 12(7). doi:10.1093/nsr/nwaf093
Chen, S., De Frenne, P., Van Meerbeek, K., Wu, Q., Peng, Y., Zheng, H., . . . Yue, K. (2024). Macroclimate and canopy characteristics regulate forest understory microclimatic temperature offsets across China. Global Ecology and Biogeography, 33(5), e13830. doi:https://doi.org/10.1111/geb.13830
Chen, S., Liu, H., Feng, Z., Shen, C., & Chen, P. (2019). Applicability of personal laser scanning in forestry inventory. Plos One. doi:10.1371/JOURNAL.PONE.0211392
Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136, 259-276.
Dandois, J. P., Olano, M., & Ellis, E. C. (2015). Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sensing, 7(10), 13895-13920. Retrieved from https://www.mdpi.com/2072-4292/7/10/13895
de Conto, T., Armston, J., & Dubayah, R. (2024). Characterizing the structural complexity of the Earth's forests with spaceborne lidar. Nature Communications, 15(1), 8116. doi:10.1038/s41467-024-52468-2
de Lima, L. C., Lawrance, N., Khosoussi, K., Borges, P., & Brünig, M. (2024). Under-Canopy Navigation Using Aerial Lidar Maps. arXiv.
Deng, J., Fang, S., Fang, X., Jin, Y., Kuang, Y., Lin, F., . . . Liu, C. (2023). Forest understory vegetation study: current status and future trends. Forestry Research, 3(1), 0-0. doi:10.48130/fr-2023-0006
Dobbs, C., Escobedo, F. J., & Zipperer, W. C. (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and urban planning, 99(3-4), 196-206.
Du, R., Lu, J., Xiang, Y., Zhang, F., Chen, J., Tang, Z., . . . Li, W. (2024). Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model. Computers and Electronics in Agriculture. doi:10.1016/J.COMPAG.2024.109074
Dwyer, J. F., McPherson, E. G., Schroeder, H. W., & Rowntree, R. A. (1992). Assessing the benefits and costs of the urban forest. Journal of Arboriculture. 18 (5): 227-234., 18(5), 227-234.
Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H.-J., . . . Seifert, T. (2022). UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sensing, 14(13), 3205. Retrieved from https://www.mdpi.com/2072-4292/14/13/3205
Flyerlee. (2017). Drone restricted area in Taiwan. Retrieved from https://www.flyerlee.com/rcrmaps/
Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., & Chirici, G. (2018). Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing. doi:10.1080/22797254.2018.1482733
Gollob, C., Ritter, T., & Nothdurft, A. (2020). Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote. Sens. doi:10.3390/RS12091509
Gonzalez, M., Augusto, L., Gallet-Budynek, A., Xue, J., Yauschew-Raguenes, N., Guyon, D., . . . Bakker, M. R. (2013). Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. Forest Ecology and Management, 289, 38-47. doi:https://doi.org/10.1016/j.foreco.2012.10.026
Goodbody, T. R., Tompalski, P., Coops, N. C., Hopkinson, C., Treitz, P., & van Ewijk, K. (2020). Forest inventory and diversity attribute modelling using structural and intensity metrics from multi-spectral airborne laser scanning data. Remote Sensing, 12(13), 2109.
Goodbody, T. R. H., Coops, N. C., Irwin, L. A. K., Armour, C. C., Saunders, S. C., Dykstra, P., . . . Perkins, G. C. (2024). Integration of Airborne Laser Scanning data into forest ecosystem management in Canada: Current status and future directions. The Forestry Chronicle, 100(2), 238-258. doi:10.5558/tfc2024-014
Hakkenberg, C. R., Clark, M. L., Bailey, T., Burns, P., & Goetz, S. J. (2024). Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions. Communications Earth & Environment, 5(1), 721. doi:10.1038/s43247-024-01893-8
Hruska, R., Mitchell, J., Anderson, M., & Glenn, N. F. (2012). Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sensing, 4(9), 2736-2752. Retrieved from https://www.mdpi.com/2072-4292/4/9/2736
Hyyppä, E., Hakala, T., Kukko, A., Wulder, M. A., White, J. C., Pyörälä, J., . . . Kaartinen, H. (2020). Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 41-60. doi:https://doi.org/10.1016/j.isprsjprs.2020.03.021
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., . . . Hyyppä, J. (2020). Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/J.ISPRSJPRS.2020.01.018
Iheaturu, C., Ayodele, E., & Okolie, C. (2020). An assessment of the accuracy of structure-from-motion (SfM) photogrammetry for 3D terrain mapping. Geomatics, Landmanagement and Landscape, 65-82. doi:10.15576/GLL/2020.2.65
Jenkins, M., & Schaap, B. (2018). Forest ecosystem services. Background analytical study, 1.
Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., . . . Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5), 969-986. doi:10.1130/ges01017.1
Johnson, K. D., Domke, G. M., Russell, M. B., Walters, B., Hom, J., Peduzzi, A., . . . Huang, W. (2017). Estimating aboveground live understory vegetation carbon in the United States. Environmental Research Letters, 12(12), 125010. doi:10.1088/1748-9326/aa8fdb
Krieger, D. J. (2001). Economic value of forest ecosystem services: a review.
Kristensen, T., Næsset, E., Ohlson, M., Bolstad, P. V., & Kolka, R. (2015). Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar. Plos One, 10(10), e0138450. doi:10.1371/journal.pone.0138450
Li, M., Shamshiri, R., Michael, S., Weltzien, C., & Laursen, M. (2022). UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds. Remote Sensing, 14, 585. doi:10.3390/rs14030585
Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., . . . Hackenberg, J. (2018). International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 137-179.
Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., . . . Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/J.ISPRSJPRS.2016.01.006
Liang, Y., Sun, Y., Kou, W., Xu, W., Wang, J., Wang, Q., . . . Lu, N. (2023). Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning. Drones. doi:10.3390/DRONES7090547
Liu, X., Feng, Y., Hu, T., Luo, Y., Zhao, X., Wu, J., . . . Su, Y. (2024). Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests. Science Advances, 10(20), eadl1947. doi:doi:10.1126/sciadv.adl1947
Luoma, V., Saarinen, N., Wulder, M. A., White, J. C., Vastaranta, M., Holopainen, M., & Hyyppä, J. (2017). Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. doi:10.3390/F8020038
Maeda, E. E., Brede, B., Calders, K., Disney, M., Herold, M., Lines, E. R., . . . Terryn, L. (2025). Expanding forest research with terrestrial LiDAR technology. Nature Communications, 16(1), 8853. doi:10.1038/s41467-025-63946-6
Menning, K. M., & Stephens, S. L. (2007). Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Fuel Hazards. Western Journal of Applied Forestry, 22(2), 88-93. doi:10.1093/wjaf/22.2.88
Moustaka, J., & Moustakas, M. (2023). Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. Biosensors (Basel), 13(8). doi:10.3390/bios13080796
Oláh, S., Barsi, Á., & Kozma, K. (2025). Potential of Point Cloud Upsampling for Environmental Protection: Enhancing Airborne LiDAR Data for Sustainable Resource Management. Chemical Engineering Transactions, 121, 91-96.
Ryding, J., Williams, E., Smith, M. J., & Eichhorn, M. P. (2015). Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote. Sens. doi:10.3390/RS70101095
Shao, Z., Cheng, G., Li, D., Huang, X., Lü, Z., & Liu, J. (2021). Spatio-temporal-spectral-angular observation model that integrates observations from UAV and mobile mapping vehicle for better urban mapping. Geo-Spatial Information Science. doi:10.1080/10095020.2021.1961567
Sjöman, H., Watkins, H., Kelly, L., Hirons, A., Kainulainen, K., Martin, K., & Antonelli, A. (2024). Resilient trees for urban environments: The importance of intraspecific variation. Plants, People, Planet, 6, 1180-1189. doi:10.1002/ppp3.10518
Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the World from Internet Photo Collections. International Journal of Computer Vision, 80(2), 189-210. doi:10.1007/s11263-007-0107-3
Snavely, N., Simon, I., Goesele, M., Szeliski, R., & Seitz, S. M. (2010). Scene Reconstruction and Visualization From Community Photo Collections. Proceedings of the IEEE, 98(8), 1370-1390. doi:10.1109/JPROC.2010.2049330
Song, S., Zhao, M., Zhang, W., Wang, F., Chen, J., & Li, Y. (2024). Research on fine collection and interpretation methods of discontinuities on high-steep rock slopes based on UAV multi-angle nap-of-the-object photogrammetry. Bulletin of engineering geology and the environment (Print). doi:10.1007/S10064-024-03646-5
Surfshark. (2020). Drone privacy laws around the world. Retrieved from https://surfshark.com/drone-privacy-laws
TaiwanCAA. (2019). Civil Aviation Act -Chapter 9-2 Drones. Retrieved from https://drone.caa.gov.tw/en-US/Default/DataDetail3/8
Toda, M., Knohl, A., Luyssaert, S., & Hara, T. (2023). Simulated effects of canopy structural complexity on forest productivity. Forest Ecology and Management, 538, 120978. doi:https://doi.org/10.1016/j.foreco.2023.120978
Trimble, S. (2020). The Importance of Forest Canopy Structure. Retrieved from https://cid-inc.com/blog/the-forest-canopy-structure-roles-measurement/
Trybała, P., Morelli, L., Remondino, F., Farrand, L., & Couceiro, M. S. (2024). Under-Canopy Drone 3D Surveys for Wild Fruit Hotspot Mapping. Drones, 8(10), 577. Retrieved from https://www.mdpi.com/2504-446X/8/10/577
Vedovato, L. B., Aragão, L. E. O. C., Almeida, D. R. A., Bartholomew, D. C., Assis, M., Dalagnol, R., . . . Feldpausch, T. R. (2025). Impacts of fire on canopy structure and its resilience depend on successional stage in Amazonian secondary forests. Remote Sensing in Ecology and Conservation, 11(4), 394-410. doi:https://doi.org/10.1002/rse2.431
von Meijenfeldt, A., Chianucci, F., Rigo, F., Ottenburghs, J., Hilpold, A., & Mina, M. (2024). Reliability of canopy photography for forest ecology and biodiversity studies. bioRxiv, 2024.2008.2029.610276. doi:10.1101/2024.08.29.610276
Wallace, L., & Musk, R. (2014). An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning Data. IEEE Transactions on Geoscience and Remote Sensing, 52. doi:10.1109/TGRS.2014.2308208
Wang, S., Zhang, W., Zhao, X., Sun, Q., & Dong, W. (2024). Automatic identification and interpretation of discontinuities of rock slope from a 3D point cloud based on UAV nap-of-the-object photogrammetry. International Journal of Rock Mechanics And Mining Sciences. doi:10.1016/J.IJRMMS.2024.105774
Wang, W., Wang, H., Xiao, L., He, X., Zhou, W., Wang, Q., & Wei, C. (2018). Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors. [Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors]. iForest - Biogeosciences and Forestry, 11(1), 140-147. doi:10.3832/ifor2466-010
Wang, W., Zhao, W., Chai, B., Du, J., Tang, L., Yi, X., . . . Yi, X. (2022). Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Computational Geosciences. doi:10.1016/J.CAGEO.2022.105191
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
Xiang, B., Wielgosz, M., Kontogianni, T., Peters, T., Puliti, S., Astrup, R., & Schindler, K. (2024). Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning. Remote Sensing of Environment, 305, 114078.
Xie, J., Zhang, H., Pu, J., Yan, Z., Cai, Y., Cui, L., & Cao, H. (2025). Multi-Scale BRDF Modeling and Scale Effect Analysis Using UAV Multi-Angle Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2025.3604421
Yan, Deng, L., Liu, X., & Zhu, L. (2019). Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation Classification. Remote. Sens. doi:10.3390/RS11232753
Ye, Y. (2021). UAV-SfM topographic stream survey.
Yingtingshih. (2025). Tainan Yongkang Pingshi Park. Retrieved from https://yingtingshih.com/tainan-yongkang-pingshi-park/
Yuan, E. (2025). Drone industry development to follow three goals, four strategies. Retrieved from https://english.ey.gov.tw/Page/61BF20C3E89B856/6884645f-0fbe-4630-a8f3-e66933545dd1
Zellweger, F., Baltensweiler, A., Schleppi, P., Huber, M., Küchler, M., Ginzler, C., & Jonas, T. (2019). Estimating below-canopy light regimes using airborne laser scanning: An application to plant community analysis. Ecology and Evolution, 9(16), 9149-9159. doi:https://doi.org/10.1002/ece3.5462
Zhao, M., Chen, J., Song, S., Li, Y., Wang, F., Wang, S., & Liu, D. (2023). Proposition of UAV multi-angle nap-of-the-object image acquisition framework based on a quality evaluation system for a 3D real scene model of a high-steep rock slope. International Journal of Applied Earth Observation and Geoinformation, 125, 103558. doi:https://doi.org/10.1016/j.jag.2023.103558
Zhao, M., Song, S., Wang, F., Zhu, C., Liu, D., & Wang, S. (2023). A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/J.JRMGE.2023.07.010