簡易檢索 / 詳目顯示

研究生: 黎鴻君
Le, Hong-Quan
論文名稱: 透過選擇性 SfM 飛行路徑與商用現成無人機,提升林下冠層森林結構建模
Improving Under-Canopy Forest Structure Modeling Through Selective SfM Flight Patterns Using a Commercial Off-The-Shelf UAV
指導教授: 哈里森約翰
F. Harrison, John
學位類別: 碩士
Master
系所名稱: 其他 - 全校永續跨域國際碩士學位學程
International Master's Program in Interdisciplinary Sustainability Studies
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 93
中文關鍵詞: 結構動作影像測量無人飛行器影像林下層評估林下層特徵化森林清查點雲分析
外文關鍵詞: Structure-from-motion, UAV imagery, under-canopy assessment, understory characterization, forest inventory, point cloud analysis
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究調查多高度無人機(UAV)結構從動(SfM)攝影測量是否能從樹冠頂部到林下細節捕捉全面的森林結構。中心假設是超低飛行在地面上方提供對森林莖幹、下層枝條和地面植被的直接視覺存取,而這些在傳統高空調查中無法獲得。在台南平石公園的四次序列飛行中,採集121張照片,通過Agisoft Metashape處理,在四個高度層生成2.85億個3D點。結果顯示:高空樹冠(>50 m)產生2140萬個點,重投影誤差為0.310像素;中間樹冠(~30 m)產生最高密度(1.696億個點,0.319像素誤差);亞樹冠(8-11 m)表現極差,僅420萬個點,誤差7.77像素,原因是葉面密度、風不穩定性和重複紋理;超低林下(2-3 m)交付8990萬個點,誤差最低(0.169像素),成功捕捉單個莖幹、枝條和地面特徵。研究建立了一個垂直信息層級,其中高空飛行表徵樹冠宏觀結構和樹冠細節,超低飛行獨特地提供林下存取。雙高度策略(高空+超低)比四層更具成本效益。Align中檔平台(約美元2,500-3,000)展現了操作限制,但在調查設計考慮平台限制時成功生成了研究品質結果。研究結果確認多高度UAV SfM對詳細森林表徵在中等成本下可行,林下操作提供從高空視角無法存取的獨特信息,策略性高度選擇比在所有高度採集數據更重要。這種成本可及的方法為森林監測提供了昂貴LiDAR的實用替代方案。

    This study investigates whether multi-altitude unmanned aerial vehicle (UAV) structure-from-motion (SfM) photogrammetry can capture comprehensive forest structure from canopy crowns to understory detail. The central hypothesis is that ultra-low flights above ground level provide direct visual access to forest stems, lower branches, and ground vegetation inaccessible from conventional high-altitude surveys. Four sequential flights at Pingshi Park, Tainan, acquired 121 photographs processed through Agisoft Metashape to generate 285 million 3D points across four altitude layers. Results show: high-altitude canopy (>50 m) generated 21.4 million points with 0.310 pix reprojection error; intermediate canopy (~30 m) yielded the highest density (169.6 million points, 0.319 pix error); sub-canopy (8–11 m) severely underperformed with 4.4 million points and 7.77 pix error due to foliage density, wind instability, and repetitive texture; and ultra-low under-canopy (2–3 m) delivered 89.9 million points with the lowest error (0.169 pix), successfully capturing individual stems, branches, and ground features. The study establishes a vertical information hierarchy where high-altitude flights characterize canopy macrostructure, crown detail, and ultra-low flights uniquely provide understory access. A two-altitude strategy (high + ultra-low) is more cost-effective than four layers. The Align mid-range platform (~USD 2,500–3,000) exhibited operational limitations but successfully produced research-quality results when survey design accounted for platform constraints. The findings confirm that multi-altitude UAV SfM is viable for detailed forest characterization at intermediate cost, that under-canopy operations deliver unique information inaccessible from high-altitude perspectives, and that strategic altitude selection is more important than acquiring data at all altitudes. This cost-accessible approach offers a practical alternative to expensive LiDAR for forest monitoring.

    Abstract ii 摘要 iv ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 INTRODUCTION 11 1.1 Research Background. 11 1.1.1 The Importance of Under-Canopy Mapping. 11 1.1.2 Current Advancements in Forest Inventory. 12 1.2 Definitions of Key Terms. 15 1.2.1 Near-Canopy and Under-Canopy. 15 1.2.2 Modeling. 16 1.2.3 Photogrammetry. 17 1.2.4 Structure from Motion (SfM). 17 1.2.5 Commercial‑Off‑The‑Shelf UAV (COTS UAV). 18 1.3 Research Motivation. 19 1.4 Research Purpose. 21 1.4.1 Research Question. 21 1.4.2 Research Objectives. 22 1.4.3 Research Hypotheses. 23 1.5 Taiwan UAV Regulations and Study Site. 24 CHAPTER 2 Literature Review 26 2.1 Under-Canopy Ecosystem Assessment. 26 2.1.1 Mountain and Forest Ecosystem Services. 26 2.1.2 Under-Canopy Ecosystem. 28 2.1.3 Under-canopy Forest Structure Modeling. 29 2.2 Drones and Structure-from-Motion Techniques. 36 2.2.1 The use of drones in academia. 36 2.2.2 Structure from Motion (SfM) Technique. 37 2.3 Specialized UAV Flight Planning. 41 2.4 Research Gap. 47 CHAPTER 3 Methodology 49 3.1 Research Process. 49 3.2 Device and Software. 51 3.2.1 Device: ALIGN Drone. 51 3.2.2 Software: Agisoft Metashape Pro. 54 3.3 Study Area. 55 3.4 Photogrammetric Survey: Mission Design and Execution. 58 3.5 Photogrammetric Data Processing. 61 3.6 Accuracy Assessment and Validation. 62 CHAPTER 4 Result and discussion 64 4.1 Overview of Datasets 64 4.2 Geometric Performance of Multi‑Altitude Missions. 65 4.3 Vertical Point‑Cloud Structure and Under‑canopy Completeness. 69 4.4 Synthesis: Effectiveness of Multi‑Layer Flight Design. 77 4.5 Limitations of the Align Drone. 77 CHAPTER 5 Conclusion 81 5.1 Summary of Key Findings and Synthesis. 81 5.2 Implications for Forest Monitoring and Inventory Applications. 83 5.3 Assessment of the Multi‑Altitude Strategy. 84 5.4 Contributions to UAV Technology and Platform Development. 85 5.5 Limitations of the Study. 86 5.6 Recommendations for Future Research and Operational Deployment. 87 5.7 Final Remarks. 88 REFERENCES 89

    Apostol, B., Chivulescu, S., Ciceu, A., Petrila, M., Pascu, I.-S., Apostol, E. N., . . . Badea, O. (2018). Data collection methods for forest inventory: a comparison between an integrated conventional equipment and terrestrial laser scanning. Annals of Forest Research, 189-202.
    Balestra, M., Marselis, S., Sankey, T., Cabo, C., Liang, X., Mokroš, M., . . . Vega, C. (2024). LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review, Current Forestry Reports, 10, 281–297. In.
    Banerjee, T., Heilman, W., Goodrick, S., Hiers, J. K., & Linn, R. (2020). Effects of canopy midstory management and fuel moisture on wildfire behavior. Scientific Reports, 10(1), 17312. doi:10.1038/s41598-020-74338-9
    Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., . . . Taki, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26(13), 3005-3035.
    Cao, H., You, D., Ji, D., Gu, X., Wen, J., Wu, J., . . . Zhang, H. (2023). The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF. Remote Sensing. doi:10.3390/RS15205000
    Chen, C., Yan, G., Schmid, B., Li, Y., Bongers, F. J., Bruelheide, H., . . . Liu, X. (2025). Understory shrub diversity: equally vital as overstory tree diversity to promote forest productivity. National Science Review, 12(7). doi:10.1093/nsr/nwaf093
    Chen, S., De Frenne, P., Van Meerbeek, K., Wu, Q., Peng, Y., Zheng, H., . . . Yue, K. (2024). Macroclimate and canopy characteristics regulate forest understory microclimatic temperature offsets across China. Global Ecology and Biogeography, 33(5), e13830. doi:https://doi.org/10.1111/geb.13830
    Chen, S., Liu, H., Feng, Z., Shen, C., & Chen, P. (2019). Applicability of personal laser scanning in forestry inventory. Plos One. doi:10.1371/JOURNAL.PONE.0211392
    Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136, 259-276.
    Dandois, J. P., Olano, M., & Ellis, E. C. (2015). Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sensing, 7(10), 13895-13920. Retrieved from https://www.mdpi.com/2072-4292/7/10/13895
    de Conto, T., Armston, J., & Dubayah, R. (2024). Characterizing the structural complexity of the Earth's forests with spaceborne lidar. Nature Communications, 15(1), 8116. doi:10.1038/s41467-024-52468-2
    de Lima, L. C., Lawrance, N., Khosoussi, K., Borges, P., & Brünig, M. (2024). Under-Canopy Navigation Using Aerial Lidar Maps. arXiv.
    Deng, J., Fang, S., Fang, X., Jin, Y., Kuang, Y., Lin, F., . . . Liu, C. (2023). Forest understory vegetation study: current status and future trends. Forestry Research, 3(1), 0-0. doi:10.48130/fr-2023-0006
    Dobbs, C., Escobedo, F. J., & Zipperer, W. C. (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and urban planning, 99(3-4), 196-206.
    Du, R., Lu, J., Xiang, Y., Zhang, F., Chen, J., Tang, Z., . . . Li, W. (2024). Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model. Computers and Electronics in Agriculture. doi:10.1016/J.COMPAG.2024.109074
    Dwyer, J. F., McPherson, E. G., Schroeder, H. W., & Rowntree, R. A. (1992). Assessing the benefits and costs of the urban forest. Journal of Arboriculture. 18 (5): 227-234., 18(5), 227-234.
    Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H.-J., . . . Seifert, T. (2022). UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sensing, 14(13), 3205. Retrieved from https://www.mdpi.com/2072-4292/14/13/3205
    Flyerlee. (2017). Drone restricted area in Taiwan. Retrieved from https://www.flyerlee.com/rcrmaps/
    Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., & Chirici, G. (2018). Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing. doi:10.1080/22797254.2018.1482733
    Gollob, C., Ritter, T., & Nothdurft, A. (2020). Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote. Sens. doi:10.3390/RS12091509
    Gonzalez, M., Augusto, L., Gallet-Budynek, A., Xue, J., Yauschew-Raguenes, N., Guyon, D., . . . Bakker, M. R. (2013). Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. Forest Ecology and Management, 289, 38-47. doi:https://doi.org/10.1016/j.foreco.2012.10.026
    Goodbody, T. R., Tompalski, P., Coops, N. C., Hopkinson, C., Treitz, P., & van Ewijk, K. (2020). Forest inventory and diversity attribute modelling using structural and intensity metrics from multi-spectral airborne laser scanning data. Remote Sensing, 12(13), 2109.
    Goodbody, T. R. H., Coops, N. C., Irwin, L. A. K., Armour, C. C., Saunders, S. C., Dykstra, P., . . . Perkins, G. C. (2024). Integration of Airborne Laser Scanning data into forest ecosystem management in Canada: Current status and future directions. The Forestry Chronicle, 100(2), 238-258. doi:10.5558/tfc2024-014
    Hakkenberg, C. R., Clark, M. L., Bailey, T., Burns, P., & Goetz, S. J. (2024). Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions. Communications Earth & Environment, 5(1), 721. doi:10.1038/s43247-024-01893-8
    Hruska, R., Mitchell, J., Anderson, M., & Glenn, N. F. (2012). Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sensing, 4(9), 2736-2752. Retrieved from https://www.mdpi.com/2072-4292/4/9/2736
    Hyyppä, E., Hakala, T., Kukko, A., Wulder, M. A., White, J. C., Pyörälä, J., . . . Kaartinen, H. (2020). Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 41-60. doi:https://doi.org/10.1016/j.isprsjprs.2020.03.021
    Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., . . . Hyyppä, J. (2020). Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/J.ISPRSJPRS.2020.01.018
    Iheaturu, C., Ayodele, E., & Okolie, C. (2020). An assessment of the accuracy of structure-from-motion (SfM) photogrammetry for 3D terrain mapping. Geomatics, Landmanagement and Landscape, 65-82. doi:10.15576/GLL/2020.2.65
    Jenkins, M., & Schaap, B. (2018). Forest ecosystem services. Background analytical study, 1.
    Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., . . . Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5), 969-986. doi:10.1130/ges01017.1
    Johnson, K. D., Domke, G. M., Russell, M. B., Walters, B., Hom, J., Peduzzi, A., . . . Huang, W. (2017). Estimating aboveground live understory vegetation carbon in the United States. Environmental Research Letters, 12(12), 125010. doi:10.1088/1748-9326/aa8fdb
    Krieger, D. J. (2001). Economic value of forest ecosystem services: a review.
    Kristensen, T., Næsset, E., Ohlson, M., Bolstad, P. V., & Kolka, R. (2015). Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar. Plos One, 10(10), e0138450. doi:10.1371/journal.pone.0138450
    Li, M., Shamshiri, R., Michael, S., Weltzien, C., & Laursen, M. (2022). UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds. Remote Sensing, 14, 585. doi:10.3390/rs14030585
    Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., . . . Hackenberg, J. (2018). International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 137-179.
    Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., . . . Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/J.ISPRSJPRS.2016.01.006
    Liang, Y., Sun, Y., Kou, W., Xu, W., Wang, J., Wang, Q., . . . Lu, N. (2023). Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning. Drones. doi:10.3390/DRONES7090547
    Liu, X., Feng, Y., Hu, T., Luo, Y., Zhao, X., Wu, J., . . . Su, Y. (2024). Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests. Science Advances, 10(20), eadl1947. doi:doi:10.1126/sciadv.adl1947
    Luoma, V., Saarinen, N., Wulder, M. A., White, J. C., Vastaranta, M., Holopainen, M., & Hyyppä, J. (2017). Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. doi:10.3390/F8020038
    Maeda, E. E., Brede, B., Calders, K., Disney, M., Herold, M., Lines, E. R., . . . Terryn, L. (2025). Expanding forest research with terrestrial LiDAR technology. Nature Communications, 16(1), 8853. doi:10.1038/s41467-025-63946-6
    Menning, K. M., & Stephens, S. L. (2007). Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Fuel Hazards. Western Journal of Applied Forestry, 22(2), 88-93. doi:10.1093/wjaf/22.2.88
    Moustaka, J., & Moustakas, M. (2023). Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. Biosensors (Basel), 13(8). doi:10.3390/bios13080796
    Oláh, S., Barsi, Á., & Kozma, K. (2025). Potential of Point Cloud Upsampling for Environmental Protection: Enhancing Airborne LiDAR Data for Sustainable Resource Management. Chemical Engineering Transactions, 121, 91-96.
    Ryding, J., Williams, E., Smith, M. J., & Eichhorn, M. P. (2015). Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote. Sens. doi:10.3390/RS70101095
    Shao, Z., Cheng, G., Li, D., Huang, X., Lü, Z., & Liu, J. (2021). Spatio-temporal-spectral-angular observation model that integrates observations from UAV and mobile mapping vehicle for better urban mapping. Geo-Spatial Information Science. doi:10.1080/10095020.2021.1961567
    Sjöman, H., Watkins, H., Kelly, L., Hirons, A., Kainulainen, K., Martin, K., & Antonelli, A. (2024). Resilient trees for urban environments: The importance of intraspecific variation. Plants, People, Planet, 6, 1180-1189. doi:10.1002/ppp3.10518
    Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the World from Internet Photo Collections. International Journal of Computer Vision, 80(2), 189-210. doi:10.1007/s11263-007-0107-3
    Snavely, N., Simon, I., Goesele, M., Szeliski, R., & Seitz, S. M. (2010). Scene Reconstruction and Visualization From Community Photo Collections. Proceedings of the IEEE, 98(8), 1370-1390. doi:10.1109/JPROC.2010.2049330
    Song, S., Zhao, M., Zhang, W., Wang, F., Chen, J., & Li, Y. (2024). Research on fine collection and interpretation methods of discontinuities on high-steep rock slopes based on UAV multi-angle nap-of-the-object photogrammetry. Bulletin of engineering geology and the environment (Print). doi:10.1007/S10064-024-03646-5
    Surfshark. (2020). Drone privacy laws around the world. Retrieved from https://surfshark.com/drone-privacy-laws
    TaiwanCAA. (2019). Civil Aviation Act -Chapter 9-2 Drones. Retrieved from https://drone.caa.gov.tw/en-US/Default/DataDetail3/8
    Toda, M., Knohl, A., Luyssaert, S., & Hara, T. (2023). Simulated effects of canopy structural complexity on forest productivity. Forest Ecology and Management, 538, 120978. doi:https://doi.org/10.1016/j.foreco.2023.120978
    Trimble, S. (2020). The Importance of Forest Canopy Structure. Retrieved from https://cid-inc.com/blog/the-forest-canopy-structure-roles-measurement/
    Trybała, P., Morelli, L., Remondino, F., Farrand, L., & Couceiro, M. S. (2024). Under-Canopy Drone 3D Surveys for Wild Fruit Hotspot Mapping. Drones, 8(10), 577. Retrieved from https://www.mdpi.com/2504-446X/8/10/577
    Vedovato, L. B., Aragão, L. E. O. C., Almeida, D. R. A., Bartholomew, D. C., Assis, M., Dalagnol, R., . . . Feldpausch, T. R. (2025). Impacts of fire on canopy structure and its resilience depend on successional stage in Amazonian secondary forests. Remote Sensing in Ecology and Conservation, 11(4), 394-410. doi:https://doi.org/10.1002/rse2.431
    von Meijenfeldt, A., Chianucci, F., Rigo, F., Ottenburghs, J., Hilpold, A., & Mina, M. (2024). Reliability of canopy photography for forest ecology and biodiversity studies. bioRxiv, 2024.2008.2029.610276. doi:10.1101/2024.08.29.610276
    Wallace, L., & Musk, R. (2014). An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning Data. IEEE Transactions on Geoscience and Remote Sensing, 52. doi:10.1109/TGRS.2014.2308208
    Wang, S., Zhang, W., Zhao, X., Sun, Q., & Dong, W. (2024). Automatic identification and interpretation of discontinuities of rock slope from a 3D point cloud based on UAV nap-of-the-object photogrammetry. International Journal of Rock Mechanics And Mining Sciences. doi:10.1016/J.IJRMMS.2024.105774
    Wang, W., Wang, H., Xiao, L., He, X., Zhou, W., Wang, Q., & Wei, C. (2018). Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors. [Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors]. iForest - Biogeosciences and Forestry, 11(1), 140-147. doi:10.3832/ifor2466-010
    Wang, W., Zhao, W., Chai, B., Du, J., Tang, L., Yi, X., . . . Yi, X. (2022). Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Computational Geosciences. doi:10.1016/J.CAGEO.2022.105191
    Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
    Xiang, B., Wielgosz, M., Kontogianni, T., Peters, T., Puliti, S., Astrup, R., & Schindler, K. (2024). Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning. Remote Sensing of Environment, 305, 114078.
    Xie, J., Zhang, H., Pu, J., Yan, Z., Cai, Y., Cui, L., & Cao, H. (2025). Multi-Scale BRDF Modeling and Scale Effect Analysis Using UAV Multi-Angle Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2025.3604421
    Yan, Deng, L., Liu, X., & Zhu, L. (2019). Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation Classification. Remote. Sens. doi:10.3390/RS11232753
    Ye, Y. (2021). UAV-SfM topographic stream survey.
    Yingtingshih. (2025). Tainan Yongkang Pingshi Park. Retrieved from https://yingtingshih.com/tainan-yongkang-pingshi-park/
    Yuan, E. (2025). Drone industry development to follow three goals, four strategies. Retrieved from https://english.ey.gov.tw/Page/61BF20C3E89B856/6884645f-0fbe-4630-a8f3-e66933545dd1
    Zellweger, F., Baltensweiler, A., Schleppi, P., Huber, M., Küchler, M., Ginzler, C., & Jonas, T. (2019). Estimating below-canopy light regimes using airborne laser scanning: An application to plant community analysis. Ecology and Evolution, 9(16), 9149-9159. doi:https://doi.org/10.1002/ece3.5462
    Zhao, M., Chen, J., Song, S., Li, Y., Wang, F., Wang, S., & Liu, D. (2023). Proposition of UAV multi-angle nap-of-the-object image acquisition framework based on a quality evaluation system for a 3D real scene model of a high-steep rock slope. International Journal of Applied Earth Observation and Geoinformation, 125, 103558. doi:https://doi.org/10.1016/j.jag.2023.103558
    Zhao, M., Song, S., Wang, F., Zhu, C., Liu, D., & Wang, S. (2023). A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/J.JRMGE.2023.07.010

    下載圖示
    校外:立即公開
    QR CODE