簡易檢索 / 詳目顯示

研究生: 鍾維安
Chung, Wei-An
論文名稱: 台灣西南陸域及海域沉積物中鐵礦物結核與磁性萃取物於砷循環之制約
Constraints from the land and off-shore iron nodules and magnetic extracts in SW Taiwan sediments on arsenic cycling
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 連續萃取嘉南平原鐵氫氧化物
外文關鍵詞: arsenic, sequential extraction procedures, Chianan Plain, iron oxyhydroxides
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西南部地區自1950年代開始因飲用含高濃度砷的地下水導致烏腳病大流行,近年雖已停止直接飲用地下水,但含砷地下水依舊使用於灌溉農業、養殖漁業,造成人類身體的危害。本次研究藉由連續萃取法及X光繞射分析台南西南部陸域以及海域的鐵礦物結核試圖增進我們對於環境中砷的理解,並釐清以下問題:(一)砷在鐵礦物結核中的分布情形,釐清鐵礦物結核富集砷的能力。(二)礦物結核富集砷的機制。(三)陸域及海域鐵礦物結核對於砷富集機制的制約。(四)礦物結核與沉積物砷分布上的差異。(五)台灣西南部砷在環境中循環的過程。21個陸域鐵礦物結核藉由X光繞射礦物相分析結果分成四群,Group-L-I為磁黃鐵礦的結核,平均總砷濃度54.5 mg/kg;Group-L-II為硫複鐵礦結核,平均總砷濃度51.6 mg/kg;Group-L-III為鐵氫氧化物結核,平均總砷濃度356.9 mg/kg; Group-L-IV為磁黃鐵礦的結核,平均總砷濃度304.2 mg/kg。16個海域結核採樣自台灣西南外海永安海脊,平均總砷濃度92.1 mg/kg。連續萃取與XRD礦物相分析呈現出不一樣的結果,礦物相分析顯示沒有含有FeOOH的Group-L-I、Group-L-II兩群標本卻含有高濃度與FeOOH結合的砷。此差異可以根據1N HCl無法完全溶解AVS的實驗結果來進行解釋,沒有被完全萃取出的與AVS結合之砷被遺留到後續步驟才被萃取出,而計算結果也證實只需要低於< 1% FeOOH即可提供足量的砷,因此才會呈現連續萃取與礦物相分析相違背的結果。在能夠有效富集砷的礦物方面海域鐵礦物結核則異於陸域鐵礦物結核,雖然FeOOH因其對砷的高分配係數導致在鐵礦物結核中FeOOH皆佔據主導地位,但XRD與連續萃取結果呈現鐵氧化物在海域鐵礦物結核中是僅次於FeOOH的次高砷富集礦物。鐵礦物結核的總砷濃度大於嘉南平原沉積物的平均砷濃度,而兩者之間的礦物相差異也證實鐵礦物結核相較沉積物而言是穩定的砷寄主,根據鐵礦物結核濃度、嘉南平原沉積物的平均砷濃度、鐵礦物結核在沉積物中比例等參數可以計算得知沉積物當中含有除了鐵礦物結核以外的砷來源。鐵礦物結核的連續萃取結果與礦物相組成能夠對台灣西南部的砷循環提供重要的制約,因此本研究對台灣西南部的砷循環提出以下建議模型:(1)中央山脈含砷硫化物經風化後受河流搬運入海,途中砷與鐵經由沉澱作用移除部分的砷。(2)硫化物進入海洋後受到氧化,形成鐵(氫)氧化物並富集砷。(3)經過抬升到陸域環境受到深埋作用、還原性流體入侵、地下水還原作用,鐵礦物結核分解釋放砷至地下水。

    In this study, geochemical analyses of iron nodules in the southwest Taiwan land and off-shore were performed to improve the understanding of the enrichment mechanism of arsenic in iron nodules by sequence extraction. The main conclusions are as follows. (1) The total arsenic concentration of iron nodules in both land and off-shore is much higher than the average arsenic concentration in the sediments of the Chianan Plain indicates that iron nodules are more stable arsenic host than sediments. (2) Iron oxyhydroxide plays a dominant role in iron nodules due to its high partition coefficient for arsenic. Despite the small proportion of goethite in the Group-L-I and Group-L-II sediments, its contribution to the total arsenic concentration is still significant. (3) Based on the sequence extraction results and mineralogical analysis, it was confirmed that the iron oxides in MD178-3276 are capable of enriching arsenic, but the partition coefficient of iron oxides is lower than that of iron oxyhydroxides, thus the total arsenic concentration in the off-shore iron nodules is lower than that in the land sample containing iron oxyhydroxides. (4) Base on this study, we suggest an arsenic cycling model including interactions between sediments and nodules in SW Taiwan.

    摘要 i Abstract iii 致謝 vii 目錄 viii 表目錄 x 圖目錄 x 第一章 序論 1 1.1.環境中砷所衍生之問題 1 1.2.文獻分析 3 1.2.1.砷的化學性質、分布、化合物 3 1.2.2.砷在沉積物與地下水間的移動 6 1.2.3.台灣地區含砷情形概況 6 1.2.4.砷連續萃取法之萃取液及對應之萃取相 8 1.3.研究區域地質背景 11 1.4.研究目的 11 第二章 實驗材料與分析方法 12 2.1.研究材料 12 2.2.分析方法 25 2.2.1.八步驟砷連續萃取法 25 2.2.1.感應耦合店將質譜儀分析 28 第三章 分析結果 30 3.1.連續萃取法結果 30 第四章 討論 38 4.1.台灣西南部陸域結核內由礦物控制之砷分布機制 38 4.2.台灣西南不外海域結核內由礦物控制之砷分布機制 43 4.3.分析造成陸域與海域連續萃取差異的成因 49 4.4.鐵礦物結核在含砷沉積物中的角色 51 4.5.各群鐵結核之成因關聯及砷循環之應用 57 第五章 結論 61 參考文獻 62 中文部分 62 英文部分 63 附錄 75

    中文文獻
    台灣質譜學會,質譜分析技術原理與應用,全華圖書股份有限公司出版(2015)。
    洪崇勝,天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(4/4),台灣南部海域沉積物之磁學性質及年代研究,經濟部中央地質調查所(2015)。
    畢如蓮,台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質科學研究所碩士論文(1995)。
    陳文福,台灣地下水之氧化還原狀態與砷濃度,農業工程學報 第56卷,第2期(2010)。
    陳冠宇,台灣西南海岸平原地下水砷之遷移與富集,國立台灣大學地質科學研究所碩士論文(2007)。
    黃姿勳,台灣布袋岩芯中沉積物砷含量分布變化及其地質意義,國立成功大學地質科學研究所碩士論文(2009)。
    歐東坤,嘉南地區地下水砷濃度之研究,國立台灣大學地質科學研究所碩士論文(2005)。
    潘友錫,台灣西南部嘉南平原沉積物砷富集機制:錦湖岩芯高解析採樣之地球化學與礦物組成證據,國立成功大學地質科學研究所碩士論文(2010)。
    邱協棟,臺灣西南海域永安及好景海脊之近表層天然氣水合物賦存潛能,中國礦冶工程學會 第59卷,第2期,17-32頁(2015)。
    顏富士,曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷,第3期(1978)。

    英文文獻
    Acharyya, S. K., Lahiri, S., Raymahashay, B. C. & Bhowmik, A., Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39(10):1127-1137, 2000.
    Alam, M.S., Wu, Y., Cheng, T., Silicate Minerals as a Source of Arsenic Contamination in Groundwater. Water, Air, & Soil Pollution, 225: 2201, 2014.
    Alarcon, R., Gaviria, J., Dold, B., Liberation of adsorbed co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater. Minerals, 4(3): 603-620, 2014.
    Amacher, M.C., Kotuby-Amacher, J., Selective extraction of arsenic from minespoils, soils, and sediments. Agron. Abstract, 86:256, 1994.
    Andreae, M.O., Arsenic in rain and the atmospheric mass balance of arsenic. Journal of Geophysical Research, 85(C8): 4512-4518, 1980.
    Bacon, J.R., Davidson, C.M., Is there a future for sequential chemical extraction? Analyst, 133: 25-46, 2008.
    Barker, W.W., Parks, T.C., The thermodynamic properties of pyrrhotite and pyrite: A re-evaluation. Geochimica et Cosmochimica Acta, 50(10):2185-2194, 1986.
    Baur, W.H., Onishi, B.-M.H., Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin. Pp. 33-A-1-33-0-5, 1969.
    Beckett, P.H.T., The use of extractants in studies on trace metals in soils, sewage sludge, and sludge-treated soils. Advances in Soil Science, 9: 144-176, 1989.
    Belzile, N., Tessier, A., Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochimica et Cosmochimica Acta, 54(1): 103-109, 1990.
    Berner, R.A., Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Marine Geology, 1(2):117-140, 1964.
    Bowell, R.J., Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3): 279-286, 1994.
    Boyle, R.W., Jonasson, I.R., The Geochemistry of As and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration. 2,251-296, 1973.
    Cappyns, V., Herreweghe, S.V., Swennen, R., Ottenburgs, R., Deckers, J., Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of The Total Environment, 295(1-3): 217-240, 2002.
    Chang, S.C., Jackson, M.L., Fractionation of soil phosphorus, Journal of Soli Science, 84:133, 1957.
    Chen, C.J., Chuang, Y.C., Lin, T.M., & Wu, H.Y., Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer research, 45,5895-5899, 1985.
    Chen, K.P., Wu, H.Y. and Wu, T.C., Epidemiologic studies on blackfoot disease in Taiwan 3 physiochemical characteristics of drinking water in endemic blackfoot disease area memoirs college of medicine. National Taiwan Univ., 8: 115-129, 1962.
    Chen, K.P., Wu, H.Y., Epidemiologic studies on blackfoot disease: 2. A study of source of drinking water in relation to the disease. journal of formosan medical association, 61: 611-618, 1962.
    Chen, K.Y., Liu, T.K., Major Factors Controlling Arsenic Occurrence in the Groundwater and Sediments of the Chianan Coastal Plain, SW Taiwan. Terrestrial, Atmospheric and Oceanic Science journal, 18(5): 975-994, 2007.
    Chen, T.C., Hseu, Z.Y., Jean, J.S., Chou. M.L., Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan. Chemosphere, 159: 214-220, 2016.
    Chiang, K.Y., Lin, K.C., Lin, S.C., Chang, T.K., Wang, M,K., Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. Journal of Hazardous Materials, 181(1-3): 1066-1071, 2010.
    Conrwell, J.C., Morse, J.W., Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine Chemistry, 22(1): 55-69, 1987
    Couture, R., Gobeil, C., Tessier, A., Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochimica et Cosmochimica Acta, 74(4):1238-1255, 2010.
    Das, S., Liu, C.C., Jean, J.S., Lee, C.C., Yang, H.Y., Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. Journal of Hazardous Materials, 310: 11-19, 2016.
    Goldberg, S., Competitive Adsorption of Arsenate and Arsenite on Oxides and Clay Minerals. Soil Science Society of America Journal, 66: 413-421, 2002
    Goldberg, S., Glaubig, R.A., Anion sorption on a calcareous, montmorillonitic soil-arsenic. Soil Science Society of America Journal, 52, 1297-1300, 1988.
    Guo, T.Z., DeLaune, R.D., Patrick, W.H., The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23, 305–316, 1997.
    Hall, G.E.M., Vaive, J.E., Pelchat, P., Bonham-Carter, G.F., Kliza-Petelle, D.A., Telmer, K., Effects of sample drying on element forms in lake sediments. Geochemistry: Exploration, Environment, Analysis, 6:163-177, 2006.
    Han, J., Fyfe, W.S., Arsenic removal from water by iron-sulphide minerals, Chinese Science Bulletin, 45:1430-1434, 2000.
    Hass, A., Fine, P., Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials-a critical review. Critical Reviews in environmental Science and Technology, 40: 365-399, 2010.
    Herreweghe, S.V., Swennen, R., Vandecasteele, C., Cappyns, V., Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 22(3): 323-342, 2003.
    Horng, C.S., Huh, C.A., Chen, K.H., Lin, C.H., Shea, K.S., Hsiung, K.H., Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8), 2012.
    Horng, C.S., Roberts, A., Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3-4): 750-762, 2006.
    Hsu, K.-H., Froines, J.R., Chen, C.-J., Studies of arsenic ingestion from drinking water in northeastern Taiwan: chemical speciation and urinary metabolites. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, pp. 190–209, 1997.
    Hsu, W.M., Hsi, H.C., Huang, Y.T., Liao, C.S., Hseu, Z.Y., Partitioning of arsenic in soil–crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan. Chemosphere, 86(6): 606-613, 2012.
    Hudson-Edwards, K.A., Houghton, S.L., Osborn, A., Extraction and analysis of arsenic in soils and sediments. Trends in Analytical Chemistry, 23(10-11): 745-752, 2004.
    Huhmann, B., Neumann, A., Boyanov, M., Kemner, K.M., Scherer, M.M., Emerging investigator series: As(V) in magnetite: incorporation and redistribution. Environmental science: Processes & Impacts, 19: 1208-1219, 2017.
    Jain, A., Raven, K.P., Loeppert, R.H., Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry. Environment Science and Technology, 33, 1179–1184, 1999.
    Jean, J.S., Bundschuh, J., Chen, C.J., Guo, H.R., Liu, C.W., Lin, T.F., Chen, Y.H., The Taiwan Crisis: a showcase of the global arsenic problem, Arsenic in The Environment, 3, 2010.
    Kaste, J.M., Friedland, A.J., Sturup, S., Using Stable and Radioactive Isotopes To Trace Atmospherically Deposited Pb in Montane Forest Soils. Environment Science and Technology, 37(16): 3560-3567, 2003.
    Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C.F. and Hemond, H.F., Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 35(13): 2778-2784, 2001.
    Kuo, T. L., Arsenic content of artesian well water in an endemic area of chronic arsenic poisoning. Rep. Institute Pathology, National Taiwan University, 1964.
    Lakshmipathiraj, P., Narasimhan, B.R.V., Prabhakar, S., Raju, G.B., Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials, 136(2): 281-287, 2006.
    Lawati, WM. AI, Jean, J.S., Kulp, T.R., Lee, M.K., Polya, D.A., Liu, C.C., Dongen, B.E.V., Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan, Journal of Hazardous Materials, 262: 970-979, 2013.
    Lengke, M.F., Sanpawanitchakit, C., Tempel, R.N., The oxidation and dissolution of arsenic-bearing sulfides. The Canadian Mineralogist, 47(3): 593-613, 2009.
    Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., Bollinger, J., Arsenic Adsorption onto Pillared Clays and Iron Oxides. Journal of Colloid and Interface Science, 255(1): 52-58, 2002.
    Liao, L.L., Jean, J.S., Chakraborty, S., Lee, M.K., Kar, S., Yang, H.J., Li, Z., Hydrogeochemistry of Groundwater and Arsenic Adsorption Characteristics of Subsurface Sediments in an Alluvial Plain, SW Taiwan. Sustainability, 8(12):1305, 2016.
    Lin, M.C., Liao, C.M., Liu, C.W. and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from Blackfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology, 67(1): 91-97, 2001.
    Liu, C.C., Jean, J.S., Nath, B., Lee, M.K., Hor, L.I., Lin, K.H., Maity, J.P., Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment. Applied Geochemistry, 24(9): 1793-1802, 2009.
    Liu, C.C., Maity, J.P., Jean, J.S., Li, Z., Kar, S., Sracek, O., Yang, H.J., Chen, C.Y., Reza, A.H.M.S., Bundschuh, J., Lee, C.Y., The geochemical characteristics of the mud liquids in the Wushanting and Hsiaokunshui Mud Volcano region in southern Taiwan: Implications of humic substances for binding and mobilization of arsenic. Journal of Geochemical Exploration, 128: 62-71, 2013.
    Liu, C.C., Maity, J.P., Jean, J.S., Reza, A.H.M.S., Li, Z., Nath, B., Lee, M.K., Lin, K.H., Bhattacharya, P., Geochemical characteristics of the mud volcano fluids in southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater. Environment Earth Sciences, 66: 1513-1523, 2012.
    Liu, C.C., Maity, J.P., Jean, J.S., Sracek, O., Kar, S., Li, Z., Bundschuh, J., Chen. C.Y., Lu. H.Y., Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan. Journal of Environmental Science and Health, Part A, 46(11): 1218-1230, 2011.
    Liu, C.W., Lin, K.H., Kuo, Y.M., Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313(1-3): 77-89, 2003.
    Livesey, N.T., Huang, P.M., Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Science, 131: 88-94, 1981.
    Lovely, D.R., Chapelle, F.H., Deep subsurface microbial processes. Reviews of Geophysics, 33(3):365-381, 1995.
    Lowers, H.A., Breit, G.N., Foster, A.L., Whitney, J., Yount, J., Uddin, M.N., Muneem, A.A., Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71(11): 2699-2717, 2007.
    Mallick, S., Rajagopal, N.R., Groundwater development in the arsenic-affected alluvial belt of West Bengal–some questions. Current Science, 70(11): 956-958, 1996.
    Mamindy-Pajany, Y., Hurel, C., Marmier, N., Roméo, M., Arsenic adsorption onto hematite and goethite. Comptes Remdus Chimie, 12(8): 876-881, 2009.
    Mandal, B.K., Chowdhury, T.R., Samanta, G., Mucherjee, D.P., Chanda, C.R., Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of The Total Environment, 218(2-3): 185-201, 1998.
    Mandal, B.K., Suzuki, K.T., Arsenic round the world: a review. Talanta, 58(1): 201-235, 2002.
    Masuda, H., Shinoda, K., Okudaira, T., Takahashi, Y., Noguchi, N., Chlorite-source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal, 46: 381-391, 2012.
    Matisoff, G., Khourey, C.J., Hall, J.F., Varnes, A.W., Strain, W.H., The Nature and Source of Arsenic in Northeastern Ohio Ground Water. Ground water, 20:446-456, 1982.
    Miller, W.P., Martens, D.C., Zelazny, L.W., Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50: 598-601, 1986.
    Montperrus, M., Bohari, Y., Bueno, M., Astruc, A., Astruc, M., Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high‐performance liquid chromatography–hydride generation‐atomic fluorescence spectroscopy. Applied Organometallic Chemistry, 16(7): 347-354, 2002.
    Morse, J.W., Cornwell, J.C., Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine Chemistry, 22(1): 55-69, 1987.
    Nath, B., Jean, J.S., Lee, M.K., Yang, H.J., Liu, C.C., Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96, 2008.
    Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. & Rahmanñ, M., Arsenic poisoning of Bangladesh groundwater. Nature, 395: 338, 1998.
    O’shea, B., Stramsky, M., Leitheiser, S., Brock, P., Marvinney, R.G., Zheng, Y., Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States, Science of The Total Environment, 505:1308-1319, 2015.
    Oung, J. N., Lee, C. Y., Lee, C. S., Kuo, C. L., Geochemical study on hydrocarbon gases in seafloor sediments, southwestern offshore Taiwan - implications in the potential occurrence of gas hydrates. Terrestrial, Atmospheric and Oceanic Science journal, 17, 921-931, 2006.
    Park, J.H., Han, Y.S., Ahn, J.S., Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Research, 106: 295-303, 2016.
    Pierce, M., Moore, C.B., Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16(7): 1247-1253, 1982.
    Pitchler, T., Veizer, J., Hall, G.E.M., Natural input of arsenate into a coral reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environmental Science and Technology, 33,1373-1378, 1999.
    Quevauviller, P., Operationally defined extraction procedures for soil and sediment analysis I. Standardization. TrAC Trends in Analytical Chemistry, 17(5): 289-298, 1998.
    Quevauviller, P., Rauret, G., Muntau, H., Ure, A.M., Rubio, R., Lopez-Sanchez, J.F., Fiedler, H.D., Griepink, B. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius Journal of Analytical Chemistry, 349: 808-814, 1994.
    Raven, K.P., Jain, A., Loeppert, R.H., Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32, 344–349, 1998.
    Reynolds, R.L., Rosenbaum, G.J., Metre, P.V., Tuttle, M., Callender, E., Goldin, A., Greigite (Fe3S4) as an indicator of drought – The 1912–1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA. Journal of Paleolimnology, 21:193-206, 1999.
    Reza, A.H.M.S, Jean, J.S., Lee, M.G., Kulp, T.R., Hsu, H.F., Liu, C.C., Lee, Y.C., The binding nature of humic substances with arsenic in alluvial aquifers of Chianan Plain, southwestern Taiwan. Journal of Geochemical Exploration, 114: 98-108, 2012.
    Sato, M., Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies. Geochemistry et Cosmochimica Acta, 56(8): 3133-3156, 1992.
    Schwertmann, U., Murad, E., Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite. Clay and Clay Minerals, 31:277-284, 1983.
    Sengupta, S., Sracek, O., Jean, J.S., Yang, H.J., Wang, C.H., Kar, S., Babek, O., Lee, C.Y., Das, S., Difference in attenuation among Mn, As, and Fe in riverbed sediments. Journal of Hazardous Materials, 341: 277-289, 2018.
    Seyfferth, A.L., Fendorf, S., Silicate Mineral Impacts on the Uptake and Storage of Arsenic and Plant Nutrients in Rice. Environment Science and Technology, 46(24): 13176-13183, 2012.
    Shuman, L.M., Chemical forms of micronutrients in soils, Micronutrients in agriculture, 113-144, 1991.
    Shuman, L.M., Sodium hypochlorite methods for extracting microelements associated with soil organic matter. Soil Science Society of America Journal, 47: 656-660, 1983.
    Smedley, P.L., Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5):517-568, 2002.
    Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S., Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20(5): 989-1016, 2005.
    Sun, J., Chillrud, S.N., Mailoux, B.J., Bostick, B.C., In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions, Environmental Science & Technology, 50(18): 10162-10171, 2016.
    Tessier, A., Campbell, P.G.C., Bisson, M., Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844-851, 1979.
    Tessier, A., Campbell, P.G.C., Bisson, M., Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844-851, 1979.
    Tessier, A., Campbell, P.G.C., Bisson, M., Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844-851, 1979.
    Truche, L., Berger, G., Destrigneville, C., Guillaume, D., Giffaut, E., Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: Implications for nuclear waste disposal. Geochimica et Cosmochimica Acta, 74(10):2894-2914, 2010.
    Tseng, W.P., Chen, W.Y., Sung, J.L., Chen, J.S., A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Mem. Coll. Med., Natl. Taiwan Univ., 3,1-8, 1961.
    Tseng, W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S., Yeh, S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute, 40, 453–463, 1968.
    Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y.S., Kirkham, M.B., Rinklebe, J., Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113: 219-230, 2017.
    Waychunas, G.A., Fuller, C.C., Rea, B.A., Davis, J.A., Wide angle X-ray scattering, WAXS study of ‘‘two-line’’ ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta, 60, 1765–1781, 1996.
    Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., Adriano, D.C., Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2):309-323, 2001.
    Wilkie, J.A., Hering, J.G., Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surfaces A-Physicochem. Engineer. Aspects 107, 97–110, 1996.
    Wu, C., Zou, Q., Xue, S.G., Pan, W.S., Yue, X., Hartley, W., Huang, L., Mo, J.Y., Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere, 165: 478-486, 2016.
    Y. Cai, J.C. Cabrera, M. Georgiadis, K. Jayachandran, Science of the Total Environment 192:123, 2002.
    Yang, H.J., Lee, C.Y., Chiang., Y.J., Jean, J.S., Shau, Y.H., Takazawa, E., Jiang, W.T., Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms. Science of the Total Environment, 569-570: 212-222, 2016.
    Yang, T.F., Yeh, G.H., Fu, C.C., Wang, C.C., Lan, T.F., Lee, H.F., Chen, C.H., Walia, V. and Sung, Q.C., Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, 46:1003-1011, 2004.
    Yao, Y., Min, X., Xu, H., Ke, Y., Liang, Y., Yang, K., Hydrothermal Treatment of Arsenic Sulfide Residues from Arsenic-Bearing Acid Wastewater. Environmental Research and Public Health, 15(9): 1863, 2018.
    Zepeda-Alarcon, E., Nakotte, H., Gualtieri, A. F., King, G., Page, K., Vogel, S. C., Wang, H.-W., Wenk, H.-R., Magnetic and nuclear structure of goethite (α-FeOOH): a neutron diffraction study. Journal of Applied Crystallography, 47:1983-1991, 2014.
    Zhang, W., Singh, P., Paling, E., Delides, S., Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17(4): 517-524, 2004.

    無法下載圖示 校內:2025-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE