| 研究生: |
薛文菁 Shiue, Wen-Jing |
|---|---|
| 論文名稱: |
在奈米孔洞金絲電極上以低電位沉積-剝除法偵測微量銅離子 Determination of trace copper by underpotential deposition-stripping voltammetry at nanoporous gold electrode |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 陽極剝除法 、低電位電鍍 、銅離子 |
| 外文關鍵詞: | copper ion, anodic stripping voltammetry, underpotential deposition |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以合金/去合金法,在室溫離子液體中製備出奈米孔洞金絲電極,利用沉積不同電量的鋅,可製備出具有不同粗糙度的奈米孔洞金絲電極。研究銅在奈米孔洞金絲電極上的低電位電鍍行為,並和不同形式的金電極比較其差異。之後,探討奈米孔洞金絲電極,以低電位電鍍配合陽極剝除法及方波陽極剝除法來偵測微量銅離子。在陽極剝除法中,發現在(10-90)×10-12 M的濃度範圍成線性關係,偵測極限及靈敏度分別為8.15pM (3σ)及0.830μA pM-1。而方波剝除法中,在(2-20)×10-12 M的濃度範圍成線性關係,偵測極限及靈敏度分別為0.12pM (3σ)及1.572μApM-1。另外,在奈米孔洞金絲電極表面上,以自組合薄膜的方式修飾上2-Mercaptoehanesulfonic acid (MES),探討其對偵測微量銅離子的影響,由實驗結果發現MES可增進電極的穩定度。
High surface area nanoporous gold electrodes with different roughness factors were prepared by alloy/dealloying process in room temperature ionic liquid. The underpotential deposition of copper ion at such electrode was examined and compared to other kind of gold electrodes. Application of nanoporous gold for the determination of trace copper ion by anodic stripping voltammetry (ASV) and square wave anodic stripping voltametry (SWASV), using underpotential deposition as the deposition step has been examined and optimized. For ASV, the calibration graphs were linear in the concentration range of (10-90)×10-12 M Cu2+ using 300s deposition at 0.2V versus Ag/AgCl (1M KCl) , the detection limit and sensitivity are 8.15pM (3σ) and 0.830μA pM-1. For SWASV, the calibration graphs were linear in the concentration range (2-20)×10-12 M Cu2+ using 50s deposition at 0.2V , the detection limit and sensitivity are 0.12pM (3σ) and 1.572μApM-1. The nanoporous gold electrode was stable after 100 repeated determinations at trace concentration level. Spontaneously adsorbed monolayer systems employing 2-Mercaptoethanesulfonic acid solution (MES) is used to form disorganized films on nanoporous gold electrode. Determination of trace copper by stripping of underpotential deposits was also performed at electrodes modified with disorganized films of MES. The results suggested the MES disorganized monolayer can improve the stability of the electrode surface.
1. O. A. Farghaly and M. A. Ghandour, Environ. Res., 97, 229 (2005).
2. K. L. Dreher, R. H. Jaskot, J. R. Lehmann, J. H. Richards, J. K. McGee, A. J. Ghio and D. L. Costa, J. Toxicol. Environ. Health, 50, 285 (1997).
3. J. W. Moore and S. Ramamoorthy, Heavy metals in natural waters : applied monitoring and impact assessment Springer, New York (1984).
4. E. A. McGaw and G. M. Swain, Anal. Chim. Acta, 575, 180 (2006).
5. C. Locatelli, Electroanalysis, 16, 1478 (2004).
6. C. N. Ferrarello, M. R. F. de la Campa and A. Sanz-Medel, Anal. Bioanal. Chem., 373, 412 (2002).
7. R. A. A. Munoz, P. R. M. Correia, A. N. Nascimento, C. S. Silva, P. V. Oliveira and L. Angnes, Energy Fuels, 21, 295 (2007).
8. S. Lunvongsa, T. Takayanagi, A. Oshima and S. Motomizu, Anal. Chim. Acta, 576, 261 (2006).
9. P. Pohl and B. Prusisz, Talanta, 71, 715 (2007).
10. D. Afzali, A. Mostafavi, M. A. Taher and A. Moradian, Talanta, 71, 971 (2007).
11. B. Mikula and B. Puzio, Talanta, 71, 136 (2007).
12. C. B. Ojeda and F. S. Rojas, Talanta, 71, 1 (2007).
13. H. S. Amolia, A. Porgam, Z. B. Sadr and F. Mohanazadeh, J. Chromatogr. A, 1118, 82 (2006).
14. M. J. Shaw and P. R. Haddad, Environ. Int., 30, 403 (2004).
15. J. Petr, S. Gerstmann and H. Frank, J. Sep. Sci., 29, 2256 (2006).
16. S. Santiago-Rivas, A. Moreda-Pineiro, A. Bermejo-Barrera and P. Bermejo-Barrera, Talanta, 71, 1580 (2007).
17. A. V. Hirner, Anal. Bioanal. Chem., 385, 555 (2006).
18. G. Hanrahan, D. G. Patil and J. Wang, J. Environ. Monit., 6, 657 (2004).
19. C. Garnier, L. Lesven, G. Billon, A. Magnier, O. Mikkelsen and I. Pizeta, Anal. Bioanal. Chem., 386, 313 (2006).
20. Y. Bonfil, M. Brand and E. Kirowa-Eisner, Electroanalysis, 15, 1369 (2003).
21. A. Uhlig, U. Schnakenberg and R. Hintsche, Electroanalysis, 9, 125 (1997).
22. A. De Donato and I. G. R. Gutz, Electroanalysis, 17, 105 (2005).
23. A. Manivannan, R. Kawasaki, D. A. Tryk and A. Fujishima, Electrochim. Acta, 49, 3313 (2004).
24. G. Herzog and D. W. M. Arrigan, Anal. Chem., 75, 319 (2003).
25. A. Rahman, D. S. Park, M. S. Won, S. M. Park and Y. B. Shim, Electroanalysis, 16, 1366 (2004).
26. E. A. Hutton, S. B. Hocevar, L. Mauko and B. Ogorevc, Anal. Chim. Acta, 580, 244 (2006).
27. G. Kefala, A. Economou and M. Sofoniou, Talanta, 68, 1013 (2006).
28. N. P. R. Andersen, P. HolstHansen and D. Britz, Anal. Chim. Acta, 329, 253 (1996).
29. S. B. Hocevar, J. Wang, R. P. Deo and B. Ogorevc, Electroanalysis, 14, 112 (2002).
30. J. Wang, Stripping Analysis : Principles, Instrumentation and Applications, VCH Publishers, Deerfield Beach (1985).
31. K. Brainina and E. Neyman, Electroanalytical Stripping Methods, John Wiley & Sons, New York (1993).
32. A. Fujishima, Y. Einaga, T. N. Rao and D. A. Tryk, Diamond Electrochemistry, Elsevier B.V., Amsterdam (2005).
33. M. G. Paneli and A. Voulgaropoulos, Electroanalysis, 5, 355 (1993).
34. A. Bobrowski and J. Zarebski, Electroanalysis, 12, 1177 (2000).
35. G. Herzog and D. W. M. Arrigan, Trac-Trends Anal. Chem., 24, 208 (2005).
36. S. Zhang, C. M. Cardona and L. Echegoyen, Chem. Commun., 4461 (2006).
37. M. Etienne, J. Bessiere and A. Walcarius, Sens. Actuator B-Chem., 76, 531 (2001).
38. M. Heitzmann, L. Basaez, F. Brovelli, C. Bucher, D. Limosin, E. Pereira, B. L. Rivas, G. Royal, E. Saint-Aman and J. C. Moutet, Electroanalysis, 17, 1970 (2005).
39. N. Verma and M. Singh, Biometals, 18, 121 (2005).
40. A. R. Ghiasvand, R. Ghaderi and A. Kakanejadifard, Talanta, 62, 287 (2004).
41. M. Zemberyova, J. Bartekova, M. Zavadska and M. Sisolakova, Talanta, 71, 1661 (2007).
42. Y. J. Tseng, Y. D. Tsai and S. J. Jiang, Anal. Bioanal. Chem., 387, 2849 (2007).
43. J. M. Liu, L. Y. Xu, L. Chen, H. Wu, F. M. Li, S. X. Lin, Z. B. Shi, Z. M. Li, G. H. Zhu and X. M. Huang, Anal. Lett., 40, 295 (2007).
44. P. L. Laamanen and R. Matilainen, Anal. Chim. Acta, 584, 136 (2007).
45. A. Berduque, Y. H. Lanyon, V. Beni, G. Herzog, Y. E. Watson, K. Rodgers, F. Stam, J. Alderman and D. W. M. Arrigan, Talanta, 71, 1022 (2007).
46. J. J. Xia, W. Z. Wei, Y. B. Hu, H. Tao and L. Wu, Anal. Sci., 20, 1037 (2004).
47. G. Herzog and D. W. M. Arrigan, Electroanalysis, 15, 1302 (2003).
48. Y. Bonfil, M. Brand and E. Kirowa-Eisner, Rev. Anal. Chem., 19, 201 (2000).
49. C. Prior, C. E. Lenehan and G. S. Walker, Electroanalysis, 18, 2486 (2006).
50. Y. N. Jiang, H. Q. Luo and N. B. Li, Anal. Sci., 22, 1079 (2006).
51. A. C. V. dos Santos and J. C. Masini, Anal. Bioanal. Chem., 385, 1538 (2006).
52. X. Dai and R. G. Compton, Electroanalysis, 17, 1835 (2005).
53. R. K. Shervedani and S. A. Mozaffari, Anal. Chem., 78, 4957 (2006).
54. M. F. de Oliveira, A. A. Saczk, L. L. Okumura, A. P. Fernandes, M. de Moraes and N. R. Stradiotto, Anal. Bioanal. Chem., 380, 135 (2004).
55. M. Brand, I. Eshkenazi and E. KirovaEisner, Anal. Chem., 69, 4660 (1997).
56. J. F. Huang and I. W. Sun, Advanced Functional Materials, 15, 989 (2005).
57. D. M. Kolb, in Advances in Electrochemistry and electrochemical engineering, Vol. 11, H. Gerischer and C. W. Tobias Editors, p. 125, John Wiley & Sons, New York (1978).
58. D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem., 54, 25 (1974).
59. V. Sudha and M. V. Sangaranarayanan, J. Phys. Chem. B, 106, 2699 (2002).
60. E. Herrero, L. J. Buller and H. D. Abruna, Chem. Rev., 101, 1897 (2001).
61. T. Hachiya, H. Honbo and K. Itaya, J. Electroanal. Chem., 315, 275 (1991).
62. M. H. Holzle, U. Retter and D. M. Kolb, J. Electroanal. Chem., 371, 101 (1994).
63. H. Matsumoto, J. Inukai and M. Ito, J. Electroanal. Chem., 379, 223 (1994).
64. A. Ulman, Chem. Rev., 96, 1533 (1996).
65. M. A. Schneeweiss and D. M. Kolb, Phys. Status Solidi A-Appl. Res., 173, 51 (1999).
66. D. W. M. Arrigan, T. Iqbal and M. J. Pickup, Electroanalysis, 13, 751 (2001).
67. G. K. Jennings and P. E. Laibinis, J. Am. Chem. Soc., 119, 5208 (1997).
68. M. V. Baker, G. K. Jennings and P. E. Laibinis, Langmuir, 16, 3288 (2000).
69. M. Nishizawa, T. Sunagawa and H. Yoneyama, Langmuir, 13, 5215 (1997).
70. S. Y. Lin, C. H. Chen, Y. C. Chan, C. M. Lin and H. W. Chen, J. Phys. Chem. B, 105, 4951 (2001).
71. F. P. Zamborini, J. K. Campbell and R. M. Crooks, Langmuir, 14, 640 (1998).
72. M. M. Walczak, D. D. Popenoe, R. S. Deinhammer, B. D. Lamp, C. K. Chung and M. D. Porter, Langmuir, 7, 2687 (1991).
73. M. M. Walczak, C. A. Alves, B. D. Lamp and M. D. Porter, J. Electroanal. Chem., 396, 103 (1995).
74. S. Trasatti and O. A. Petrii, J. Electroanal. Chem., 327, 353 (1992).
75. A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications, John-Wiley & Son, New York (2001).
76. Y. C. Liu and T. C. Chuang, J. Phys. Chem. B, 107, 9802 (2003).