| 研究生: |
謝永達 Sie, Yong-Da |
|---|---|
| 論文名稱: |
應用非線性光學影像與微加工技術研究SH3GLB2蛋白質凝聚 Nonlinear Optical Imaging and Microprocessing to Study SH3GLB2 Protein Polymerization |
| 指導教授: |
陳顯禎
Chen, Shean-jen |
| 共同指導教授: |
張南山
Chang, Nan-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 蛋白質凝聚 、雙光子激發螢光 、雙光子微加工 、螢光生命週期影像 、影像追蹤 |
| 外文關鍵詞: | protein polymerization, two-photon excited fluorescence, two-photon microprocessing, fluorescence lifetime imaging microscopy, image tracking |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要整合超快雷射三維影像及加工技術,並結合奈米光學理論和生物分子探針技術,來探討SH3GLB2蛋白質的特性。在人體中Spas-1同源SH3GLB2基因已知被過度表現在前列腺癌轉移的細胞中,而在過度表現SH3GLB2基因的非洲綠猴腎細胞株(COS-7 fibroblast)中發現可形成蛋白質聚落。論文主要分三部分,第一部分為超快雷射加工系統的掃描路徑規劃提升,利用Visual Studio C++ 程式開發撰寫DLL動態連結資料庫,將STL (stereo lithography)檔進行轉檔切圖以及向量掃描(vector scan)路徑規劃的演算法,加入到目前以LabVIEW程式控制的超快雷射加工影像系統中。透過以上的整合,可緊密結合從電腦輔助設計端(computer aided design)到雷射加工製造端的流程,再搭配三維雙光子激發影像技術即可提供具影像精確定位和加工多重功能的系統。在第二部分研究,主要利用此飛秒雷射影像加工系統來對於SH3GLB2 蛋白質進行fluorescence recovery after photobleaching實驗,探討SH3GLB2蛋白質聚落在受雷射破壞後恢復的情形。透過單光子計數技術來觀察對於加工前後蛋白質螢光隨時間變化;利用雙光子影像縮時攝影(time lapse)和光流法(optical flow)結合絕對誤差和套合(sum of absolute difference)演算法,追蹤蛋白質聚落的位移以及速率來探討TGF-β1對於SH3GLB2蛋白質聚落活動力的調節和ATP能量代謝的關係,由於生物細胞在基因轉錄或是蛋白質的運送時皆需要能量的參與以進行生物反應。第三部分主要結合奈米光學理論和螢光生命周期影像顯微術(fluorescence lifetime imaging microscopy)來研究SH3GLB2蛋白質聚落在轉染兩種螢光基因表現的COS-7細胞中,其螢光生命周期的變化與蛋白質聚落鍵結的程度關係。
In this thesis, an ultrafast laser system with three-dimensional (3D) molecular imaging and microprocessing has been utilized to investigate SH3GLB2 protein polymerization. In addition, nano-optics theory and bio-molecular probe technique are implemented. In humans, the Spas-1 ortholog SH3GLB2 has been reported to be overexpressed in prostate cancer metastases. It is observed that in the SH3GLB2 overexpressed African green monkey kidney (COS-7 fibroblasts) cell lines the endophilin B2 protein can aggregate to form clusters around the cell nucleus. The research content of this paper can be divided into three parts. The first part is focused on improving the path planning of a developed Ti:sapphire femtosecond laser system. A Visual Studio C++ program having stereo lithography format file transformation and vector scan path allocation has been developed as a DLL (dynamic link library) format and integrated into the LabVIEW platform of the laser system. Through the above integration, the laser microprocessing can be directly manipulated from the computer aid design of 3D microstructures into the laser processing terminal. In the second part, the developed system was utilized to investigate the recovery of SH3GLB2 protein polymerization clusters after photon damage via fluorescence recovery after photobleaching technique based on observing the protein fluorescence variation with time via single photon counting technique. Optical flow method and sum of absolute difference method were combined as a tracking algorithm in two-photon time lapse imaging which evaluates the effective speed of the protein clusters in cytoplasm. The experimental results are used to study and investigate the TGF-beta1-regulated SH3GLB2 protein assembly and the relation to the ATP metabolism since it is always need energy to participate in when the gene express or protein transport. Finally, nano-optics theory and fluorescence lifetime image microscopy are utilized to study the binding affinity of SH3GLB2 expression construct transfected with a green fluorescent protein (GFP)-tagged and red fluorescence protein (DsRed).
1. C.-W. Chang, D. Sud, and M.-A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods in Cell Biology 81, 495-524 (2007).
2. J. Lu, W. Min, J.-A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Letters 9, 3883-3889 (2009).
3. L. Novotny and B. Hecht, Principles of Nano-Optics, 1st ed. (Cambridge, 2006).
4. D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation Molecule Interactions, 1st ed. (Academic Press, 1984).
5. B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).
6. S. R. Swift and L. Trinkle-Mulcahy, “Basic principles of FRAP, FLIM and FRET,” Proc. Royal Mic. Soc. 39, 3-10 (2004).
7. Y. Takahashi, C. L. Meyerkord, and H.-G. Wang, “Bif-1/Endophilin B1: a candidate for crescent driving force in autophagy,” Cell Death Differ. 16, 947-955 (2009).
8. Y. Takahashi, D. Coppola, N. Matsushita, H. D. Cualing, M. Sun1, Y. Sato, C. Liang, J. U. Jung, J. Q. Cheng, J. J. Mulé, W. J. Pledger, and H.-G. Wang, “Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis,” Nat. Cell Biology 9, 1142-1151 (2007).
9. G. R. Y. D. Meyer, G. W. D. Keulenaer, and W. Martinet, ” Role of autophagy in heart failure associated with aging,” Heart Fail Rev. 15, 423-430 (2010).
10. B. Pierrat, M. Simonen, M. Cueto, J. Mestan, P. Ferrigno, and J. Heim, “SH3GLB, a new endophilin-related protein family featuring an SH3 domain,” Genomics 71, 222-234 (2001).
11. M. Fasso, R. Waltz, Y. Hou, T. Rim, N. M. Greenberg, N. Shastri, L. Fong, and J. P. Allison, “SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade,” PANS 105, 3509-3514 (2008).
12. R. Kang, H. Zeh, M. Lotze, and D. Tang, “The Beclin 1 network regulates autophagy and apoptosis,” Cell Death and Differentiation 18, 1-10 (2011).
13. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Strobawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” Journal of Microscopy 217, 200-204 (2005).
14. E. A J. Erijman and T. M Jovin, “FRET imaging,” Nature Biotech. 21, 1387-1395 (2003).
15. Y. Su, R. N Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nature Protocol 6, 1324-1340 (2011).
16. Y.-L. Wang, “Computational restoration of fluorescence images: noise eduction, deconvolution, and pattern recognition,” Methods in Cell Biology 81, 435-445 (2003).
17. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nature Methods 8, 393-399 (2011).
18. E. B. V. Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Engin./Biotechnol. 95, 143-175 (2005).
19. D. Sud and M.-A. Mycek, “Image restoration for fluorescence lifetime imaging microscopy (FLIM),” Opt. Express 16, 19192-19200 (2008).
20. R. Szplet, J. Kalisz, and R. Szymanowski, “Interpolating time counter with 100 ps resolution on a single FPGA device,” IEEE Transactions on Instrumentation and Measurement 49, 879-883 (2000).
21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
22. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14, 302-307 (1966).
23. H. E. Grecco, P. R. Navarro, and P. J. Verveer, “Global analysis of time correlated single photon counting FRET-FLIM data,” Opt. Express 17, 6493-6508 (2009).
24. R. Yasuda, Imaging Signal Transduction in Single Synapses Using 2-Photon FRET and FLIM, Ph.D. Dissertation (Duke University, 2009).
25. M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58-73 (2003).
26. H. Wallrabe, M. Elangovan, A. Burchard, and M. Barroso, “Energy transfer efficiency based on one- and two-photon FRET microscopy differentiates between clustered and random distribution of membrane-bound receptor-ligand complexes,” Proc. SPIE 4620, 310-318 (2002).
27. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nature Methods 8, 393-399 (2011).
28. M. Vatani, A. R. Rahimi, F. Brazandeh, and A. S. Nezhad, “An enhanced slicing algorithm using nearest distance analysis for layer manufacturing,” World Academy of Science Engineering and Technology 49, 721-726 (2009).
29. C.-S. Wang, W.-H. A. Wang, and M.-C. Lin, “STL rapid prototyping bio-CAD model for CT medical image segmentation,” Computers in Industry 61, 187-197 (2010).
30. D.-X. Wang, D.-M. Guo, Z.-Y. Jia, and H.-W. Leng, “Slicing of CAD models in color STL format,” Computers in Industry 57, 3-10 (2006).
31. S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Applied Surface Science 208-209, 153-158 (2003).
32. H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scot, A. Bretscher, H. Ploegh, and P. Matsudaira, Molecular Cell Biology, 6th ed. (W. H. Freeman and Company, 2000).
33. J. Massague, “How cells read TGF-β signals,” Nature Reviews Molecular Cell Biology 1, 169-178 (2000).
34. D. R. Donohoe, N. Garge, X. Zhang, W. Sun, T. M. O’Connell, M. K. Bunger, and S. J. Bultman, “The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon,” Cell Metabolism 13, 517-526 (2011).
35. J. R. Coorper, F. E. Bloom, and R. H. Roth, The Biochemical Basis of Neuropharmacology, 8th ed. (Oxford University Press, 2003).
36. J. W. Lee and M. M. Cox, “Inhibition of RecA protein promoted ATP hydrolysis. 1. ATPγS and ADP are antagonistic inhibitors,” Biochemistry 29, 7666-7676 (1990).
37. D. J. Fleet and T. Weiss, “Optical flow estimation,” Handbook of Mathematical Models in Computer Vision, 239-258 (Springer, 2005).
38. J. L. Barron, D. J. Pleet, S. S. Beauchemin, and T. A. Burkitt, “Performance of optical flow techniques,” IEEE Computer Society Conference, 236-242 (1992).
39. B. Habermann, “The BAR-domain family of proteins: a case of bending and binding?,” EMBO Reports 5, 250-255 (2004).
40. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18, 27550-27559 (2010).