| 研究生: |
張言竹 Chang, Yen-chu |
|---|---|
| 論文名稱: |
以混和控制來改善磁浮避震器桿與球的控制 Hybrid Mode Control in Improvement to Magnetic Suspension Ball and Beam System |
| 指導教授: |
林清一
Lin, Chin E. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 磁浮避震器 、球和桿 、模糊控制 |
| 外文關鍵詞: | fuzzy logic control, ball and beam, MATLAB/Simulink, magnetic suspension |
| 相關次數: | 點閱:72 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁浮技術的發展已被廣泛的應用在高科技工業,是因為它存在著無接觸、無摩擦、無汙染和低噪音的優點。本論文描述了混合式磁浮避震器的設計和測試,藉由過去實驗室學長的經驗和分析改善缺點製作出新型的磁浮避震器。磁浮避震器的元件設計是使用Solid Work軟體繪製而成,它可以清楚的看出各個原件的配合情形以便修改和做材料的選取。設計完成後推導磁浮避震器的磁力和系統方程式來作分析和控制。本論文是使用滑動控制法並且以MATLAB/Simulink 做為控制環境來模擬系統的穩定性和強健性,完成了磁浮避震器的測試後再對經典的球和桿系統做穩定平衡控制。球和桿系統使用微處理器去控制驅動電路和磁浮避震器,並且成功的達成了機電整合的效果。系統的穩定控制是先推導出球和桿系統的動態方程式,再以滑動控制法作穩定平衡模擬,再將滑動控制法結合模糊控制法完成可變平衡位置的平衡控制。本文中對不同的情況分別做實驗,皆得到符合預期的結果,並做詳盡的比較與分析。
The development of magnetic suspension technology has been widely applied in high-tech industry. MS has features of contact-free, friction-free, low contamination and low noise. This thesis describes the design and examination of the hybrid MS vibration absorber referring to laboratory’s previous works with analyses to improve the shortage in a newly created MS vibration absorber and system. Each component is designed by Solid Work, which can observe clearly the collocation situation among every component and easily revise and choose the material. The MS vibration absorber is analyzed and controlled by deriving its magnetic force and system state equations. This thesis uses MATLAB/Simulink to simulate the stability and robustness of system, and applies sliding mode control in the balance and stable the classic ball and beam system. The drive circuit and MS vibration absorbers are controlled by the microcontroller in ball and beam system, and it accomplishes the mechatronics. The stable control of system is to derive the dynamic equation of ball and beam system and uses SMC to simulate. The combined SMC and FLC are used to control the adjustable stable position. This thesis test separately for different situations and the results are conformed to desired responses. Finally, comparison and analyses of the results in laboratory have presented good improvements on the proposed system.
[1] A. Nabeel, A. Basak, “Electropermanent Suspension System for Acquiring Large Air-gaps to Suspend Loads”, IEEE Trans. on Magnetics, Vol. 31, pp. 4193-4195, Nov. 1995.
[2] 柯博凱,“混合式磁浮避震的控制”,國立成功大學航空太空工程研究所 碩士論文,民國92 年。
[3] C. E. Lin, L. A. Lee, “Dynamic Controls for Magnetic Suspension Application”, Recent Advances in Motion Control (Book), Nikkan-Kygyo Publishing Co., Tokyo, Japan, December 25, 1990, p. 103-111.
[4] C. E. Lin, H. L. Jou, “Force Model Identification for Magnetic Suspension Systems via Magnetic Field Measurement”, IEEE Trans. on Instrumentation and Measurement, Vol. IM-42, No. 3, June 1993, pp. 767-771.
[5] 李家康,“混合磁浮避震系統的設計與實現”,國立成功大學航空太空工程研究所 碩士論文,民國91 年。
[6] 陳益宏,“混合磁浮避震器控制實現”,國立成功大學航空太空工程研究所 碩士論文,民國95 年。
[7] C. E. Lin, C. C. Ker, R. T. Wang, “Magnetic suspension actuator control in ball and beam system demonstration”, JSME International Journal in serial C, Vol. 49, No. 4, Dec. 2006, pp. 1018-1026.
[8] C. C. Ker, C. E. Lin, R. T. Wang, “ A ball and beam tracking and balance control using magnetic suspension actuators”, International Journal of Control. (Accepted, Oct. 2006), (SCI).
[9] C. E. Lin, C. C. Ker, R. T. Wang and C. L. Chen, “A New Ball and Beam System using Magnetic Suspension Actuator”, IECON 2005, The 31st Annual of the IEEE Industrial Electronics Society, Nov, 2005. (EI)
[10] L. A. Zadeh, “Fuzzy sets”, Information Control, vol. 8, pp. 338-352, 1965.
[11] Mamdani, E. H., (1974), “Applications of fuzzy algorithms for simple dynamic plants”, Proc. IEE, 121,pp 1585-1588.
[12] Kuo, H. C. and Wu, L. J., “An image tracking system for welded seams using fuzzy logic”, Journal of Materials Processing Technology, vol. 120, pp. 169-185, 2002.
[13] Kuo, Yi-Pin and Li, Tzuu-Hseng S., “A Composite EP-based Fuzzy Controller for Active Suspension System”, International Journal of Fuzzy Systems, vol. 2, no. 3, pp.182-190, 2000.
[14] Kuo, Yi-Pin and Li, Tzuu-Hseng S., “GA-based Fuzzy PI/PD Controller for Automotive Active Suspension System”, IEEE Trans. Industrial Electronic. vol. 46, no. 6, pp. 1051-1056, 1999.
[15] Boverie, S., Demaya, B. and Titli, A., “Fuzzy logic control compared with other automatic control approaches,” Proc. of the 30th Conf. on Decision and Control, Brighton, England, pp. 1212-1216, 1991.
[16] P. Yang, Q. Zhang, L. B. Li, “Design of Fuzzy Weight Controller in Single-Axis Magnetic Suspension System”, IEEE Proceedings of the 4th World Congress on Intelligent Control and Automation, Jun 10-14, 2002, pp. 3027-3030.
[17] A. Tzes, J. C. Chen, P. Y. Peng, “Supervisory Fuzzy Control Design for a Magnetic Suspension System”, IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference on 26-29, Vol.1, June 1994, pp. 138-143.
[18] R. A. Decarllo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable system: a tutorial”, Proc. of the IEEE, vol. 76, pp. 212-232, 1988.
[19] J. Suytino, F. H. Kobayashi, and Y. Dote, “Variable-structured robust controller by fuzzy logic for servomotors”, IEEE Transactions on Industrial Electronics, vol. 40, pp. 80-88, 1993.
[20] C. L. Kuo, THS Li, N. R. Guo, “Design of a novel fuzzy sliding-mode control for magnetic ball levitation system”, Journal of Intelligent and Robotic Systems, Vol.42, pp. 295-316, March, 2005.
[21] R. M. Hirschorn, “Incremental Sliding Mode Control of the Ball and Beam”, ICEEE Transactions on Automatic Control, Vol.47, no.10, October, 2002.
[22] 孫宗瀛,許益敏,林政緯,TI MSP430混和信號微控器入門,全華科技圖書股份有限公司,2006年12月,ISBN 957-21-5597-0。