簡易檢索 / 詳目顯示

研究生: 林成翰
Lin, Cheng-Han
論文名稱: 一步法鎳觸媒加氫處理棕櫚油之替代航空燃油製程
One-step Hydro-conversion of Palm Oil into Renewable Jet Fuels over Ni-based Catalysts
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 37
中文關鍵詞: 替代航空燃油加氫處理鎳基觸媒SAPO-11沸石檸檬酸磷鎢酸水合物
外文關鍵詞: Renewable jet fuel, Hydro-conversion, Ni-based catalyst, SAPO-11 zeolite, Citric acid, Phosphotungstic acid hydrate
相關次數: 點閱:54下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加氫處理三酸甘油酯生產替代航空燃油在生質燃料扮演重要角色,並於有效減少溫室氣體排放方面獲得關注,本研究在反應條件為溫度380至420℃、壓力38至59 bar和液時空速0.5至2 h-1情況下,進行了以NiAg負載在SAPO-11沸石上對棕櫚油直接轉化成替代航空燃油的實驗,另外,觸媒特性使用了XRD、TEM、N2吸附-脫附、TG和Py-FTIR儀器進行檢測,實驗結果得知NiAg/SAPO-11觸媒在檸檬酸和磷鎢酸的輔助下,加氫脫氧、加氫裂解和加氫異構化活性均有不錯的表現,影響轉化率、選擇性和異構烷烃含量的關鍵主要和觸媒的反應溫度、金屬分佈、酸含量以及孔洞結構有關。除此之外,為了確保燃油符合能ASTM D7655規範,使用了GC-MS/FID和閃火點檢測儀對燃油特性進行分析,在最佳的反應條件下,分別獲得了100%的轉化率、84%的選擇性、2.1的異構烷烃-正烷烃比、產率72%、芳香族含量7%和閃火點58℃。

    Hydro-conversion of triglyceride to renewable jet fuel (HRJ) plays an important role in drop-in aviation fuels and has drawn the attention of scholars because of its potential to reduce aircraft pollution and mitigate greenhouse gas emissions. A one-step direct-conversion of palm oil into HRJ over NiAg supported on SAPO-11 zeolite under the reaction conditions at 380-420℃, 38-59 bar, and 0.5-2 h-1 was investigated in this paper. Also, the properties of the catalysts were characterized using XRD, TEM, N2 adsorption-desorption, TG and Py-FTIR. The NiAg/SAPO-11 catalyst showed good performance in terms of hydro-processing, hydro-cracking and hydro-isomerization activities with the assistance of citric acid (CA) and phosphotungstic acid hydrate (HPW). The key to high conversion, high selectivity, and high iso-alkane content depended mostly on the reaction temperature, metal dispersion, acid content, and the pore structures of the zeolite. Furthermore, the fuel properties were tested in a GC-MS/FID and flash point tester to ensure that they met the ASTM D7655 specifications. Under the optimal reaction conditions, a conversion of 100%, selectivity of 84%, an I-to-N ratio of 2.1, a yield of 72%, an aromatics content of 7%, and a flash point of 58℃ were obtained.

    Abstract II 中文摘要 III Acknowledgement IV Content V List of Tables VII List of Figures VIII Chapter I 1 Introduction 1 Chapter II 4 Experimental 4 2.1 Materials 4 2.1.1 Palm oil composition 4 2.1.2 Catalyst preparation 5 2.2 Experimental setup 6 2.3 Reaction procedure 9 2.3.1 Reduction conditions 9 2.3.2 Hydro-conversion 9 2.4 Catalyst characterization 10 2.4.1 X-ray diffraction 10 2.4.2 Transmission electron microscopy 10 2.4.3 Textural properties 10 2.4.4 Thermogravimetric analysis 10 2.4.5 Pyridine adsorbed Fourier transform infrared spectrometer 10 2.5 Lipid analysis 11 2.5.1 Palm oil 11 2.5.2 Renewable jet fuel 11 2.5.3 Calculation methods 12 Chapter III 13 Results and discussion 13 3.1 Catalyst characterization 13 3.1.1 X-ray diffraction 13 3.1.2 Transmission electron microscopy 14 3.1.3 Textural properties 15 3.1.4 Thermogravimetric analysis 16 3.1.5 Pyridine adsorbed Fourier transform infrared spectrometer 17 3.2 Catalytic performance 18 3.2.1 Influence of the metal loadings 18 3.2.2 Influence of the auxiliary agent loadings 20 3.2.3 Influence of the reaction conditions 22 3.2.4 Catalytic mechanism 24 3.3 GC-FID spectra comparison 26 3.4 Product analysis 28 3.5 Mass, carbon and energy yields for the process 30 Chapter IV 32 Conclusions 32 References 33

    1. Rosillo-Calle, F., S. Teelucksingh, D. Thrän, and M. Seiffert, The Potential Role of Biofuels in Commercial Air Transport-Biojetfuel (No. Task 40: Sustainable International Bioenergy trade). IEA, Paris, 2012.
    2. ExxonMobil. The Outlook for Energy: A view to 2040. 2016 [cited 2019 13.04]; Available from: https://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf.
    3. Van Ruijven, B. and D.P. Van Vuuren, Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy, 2009. 37(11): p. 4797-4808.
    4. IEA. Key World energy statistics 2016. 2016 [cited 2019 13.04]; Available from: http://large.stanford.edu/courses/2017/ph241/kwan1/docs/KeyWorld2016.pdf.
    5. IATA. Resolution on the implementation of the aviation "CNG2020" strategy. 2010 [cited 2019 13.04]; Available from: https://www.iata.org/pressroom/pr/documents/agm69-resolution-cng2020.pdf.
    6. IEA. Technology roadmap biofuels for transport: International Energy Agency. 2011 [cited 2019 13.04]; Available from: https://www.fiva.org/wp-content/uploads/Technology-Biofuels-for-Transport.pdf.
    7. Edwards, T., D. Minus, W. Harrison, E. Corporan, M. DeWitt, S. Zabarnick, and L. Balster. Fischer-Tropsch Jet Fuels-Characterization for Advanced Aerospace Applications. in 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. 2004.
    8. Krár, M., S. Kovács, D. Kalló, and J. Hancsók, Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Bioresource technology, 2010. 101(23): p. 9287-9293.
    9. Kubička, D. and L. Kaluža, Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 2010. 372(2): p. 199-208.
    10. Şenol, O., T.-R. Viljava, and A. Krause, Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catalysis Today, 2005. 100(3-4): p. 331-335.
    11. Liu, S., Q. Zhu, Q. Guan, L. He, and W. Li, Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource technology, 2015. 183: p. 93-100.
    12. Coonradt, H.L. and W.E. Garwood, Mechanism of hydrocracking. Reactions of Paraffins and Olefins. Industrial & Engineering Chemistry Process Design and Development, 1964. 3(1): p. 38-45.
    13. Deldari, H., Suitable catalysts for hydroisomerization of long-chain normal paraffins. Applied Catalysis A: General, 2005. 293: p. 1-10.
    14. Blasco, T., A. Chica, A. Corma, W. Murphy, J. Agúndez-Rodríguez, and J. Pérez-Pariente, Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis, 2006. 242(1): p. 153-161.
    15. Walendziewski, J. and B. Pniak, Synthesis, physicochemical properties and hydroisomerization activity of SAPO-11 based catalysts. Applied Catalysis A: General, 2003. 250(1): p. 39-47.
    16. Shahinuzzaman, M., Z. Yaakob, and Y. Ahmed, Non-sulphide zeolite catalyst for bio-jet-fuel conversion. Renewable and Sustainable Energy Reviews, 2017. 77: p. 1375-1384.
    17. Ooi, Y.-S. and S. Bhatia, Aluminum-containing SBA-15 as cracking catalyst for the production of biofuel from waste used palm oil. Microporous and Mesoporous Materials, 2007. 102(1-3): p. 310-317.
    18. Twaiq, F.A., N.A. Zabidi, and S. Bhatia, Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Industrial & engineering chemistry research, 1999. 38(9): p. 3230-3237.
    19. Congxin, W., L. Qianhe, L. Xuebin, Y. Lijun, L. Chen, W. Lei, W. Bingchun, and T. Zhijian, Influence of reaction conditions on one-step hydrotreatment of lipids in the production of iso-alkanes over Pt/SAPO-11. Chinese Journal of Catalysis, 2013. 34(6): p. 1128-1138.
    20. Lutz, W., R. Kurzhals, S. Sauerbeck, H. Toufar, J.-C. Buhl, T. Gesing, W. Altenburg, and C. Jäger, Hydrothermal stability of zeolite SAPO-11. Microporous and Mesoporous Materials, 2010. 132(1-2): p. 31-36.
    21. Liu, Q., H. Zuo, Q. Zhang, T. Wang, and L. Ma, Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts. Chinese Journal of Catalysis, 2014. 35(5): p. 748-756.
    22. Products, A.C.D.o.P. and Lubricants, Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. 2014: ASTM International.
    23. Bester, N. and A. Yates. Assessment of the operational performance of fischer-tropsch synthetic-paraffinic kerosene in a T63 gas turbine compared to conventional Jet A-1 fuel. in ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2009. American Society of Mechanical Engineers.
    24. Rabaev, M., M.V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, and M. Herskowitz, Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. Fuel, 2015. 161: p. 287-294.
    25. Corporan, E., T. Edwards, L. Shafer, M.J. DeWitt, C. Klingshirn, S. Zabarnick, Z. West, R. Striebich, J. Graham, and J. Klein, Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy & Fuels, 2011. 25(3): p. 955-966.
    26. Duong, L.H., I.K. Reksowardojo, T.H. Soerawidjaja, D.N. Pham, and O. Fujita, The sooting tendency of aviation biofuels and jet range paraffins: effects of adding aromatics, carbon chain length of normal paraffins, and fraction of branched paraffins. Combustion Science and Technology, 2018. 190(10): p. 1710-1721.
    27. Zheng, S., M. Kates, M. Dubé, and D. McLean, Acid-catalyzed production of biodiesel from waste frying oil. Biomass and bioenergy, 2006. 30(3): p. 267-272.
    28. Liu, Q., H. Zuo, T. Wang, L. Ma, and Q. Zhang, One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts. Applied Catalysis A: General, 2013. 468: p. 68-74.
    29. Yang, L., S. Xing, H. Sun, C. Miao, M. Li, P. Lv, Z. Wang, and Z. Yuan, Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes. Fuel Processing Technology, 2019. 187: p. 52-62.
    30. Cheng, J., Z. Zhang, X. Zhang, J. Liu, J. Zhou, and K. Cen, Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 2019. 245: p. 384-391.
    31. Fan, K., J. Liu, X. Yang, and L. Rong, Hydrocracking of Jatropha oil over Ni-H3PW12O40/nano-hydroxyapatite catalyst. International Journal of Hydrogen Energy, 2014. 39(8): p. 3690-3697.
    32. Moon, K.-S., H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. Journal of Electronic Materials, 2005. 34(2): p. 168-175.
    33. Saggese, C., A.V. Singh, X. Xue, C. Chu, M.R. Kholghy, T. Zhang, J. Camacho, J. Giaccai, J.H. Miller, and M.J. Thomson, The distillation curve and sooting propensity of a typical jet fuel. Fuel, 2019. 235: p. 350-362.
    34. Pires, A.P., Y. Han, J. Kramlich, and M. Garcia-Perez, Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResources, 2018. 13(2): p. 2632-2657.
    35. Lee, S.W., S.D. Park, S. Kang, I.C. Bang, and J.H. Kim, Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 2011. 54(1-3): p. 433-438.
    36. Scaldaferri, C.A. and V.M.D. Pasa, Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step. Chemical Engineering Journal, 2019. 370: p. 98-109.
    37. Zhang, Q., K. Long, J. Wang, T. Zhang, Z. Song, and Q. Lin, A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2017. 42(20): p. 14103-14114.
    38. Li, X., Y. Chen, Y. Hao, X. Zhang, J. Du, and A. Zhang, Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renewable Energy, 2019. 139: p. 551-559.
    39. Chen, Z., X. Li, Y. Xu, Y. Dong, W. Lai, W. Fang, and X. Yi, Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether. Catalysis Communications, 2018. 103: p. 1-4.
    40. Sahoo, S.K., S.S. Ray, and I. Singh, Structural characterization of coke on spent hydroprocessing catalysts used for processing of vacuum gas oils. Applied Catalysis A: General, 2004. 278(1): p. 83-91.
    41. Huang, X., L. Wang, L. Kong, and Q. Li, Improvement of catalytic properties of SAPO-11 molecular sieves synthesized in H2O–CTAB–butanol system. Applied Catalysis A: General, 2003. 253(2): p. 461-467.
    42. Pu, X., N.-w. Liu, and L. Shi, Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration. Microporous and Mesoporous Materials, 2015. 201: p. 17-23.
    43. Hengsawad, T., C. Srimingkwanchai, S. Butnark, D.E. Resasco, and S. Jongpatiwut, Effect of Metal–Acid Balance on Hydroprocessed Renewable Jet Fuel Synthesis from Hydrocracking and Hydroisomerization of Biohydrogenated Diesel over Pt-Supported Catalysts. Industrial & Engineering Chemistry Research, 2018. 57(5): p. 1429-1440.
    44. Song, X. and D. Zhang, Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells). Energy, 2014. 70: p. 223-230.
    45. Dabiri, M. and S. Bashiribod, Phosphotungstic Acid: An Efficient, Cost-effective and Recyclable Catalyst for the Synthesis of Polysubstituted Quinolines. Molecules, 2009. 14(3): p. 1126-1133.
    46. Xing, S., P. Lv, J. Wang, J. Fu, P. Fan, L. Yang, G. Yang, Z. Yuan, and Y. Chen, One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways. Physical Chemistry Chemical Physics, 2017. 19(4): p. 2961-2973.
    47. Du, H., D. Liu, M. Li, P. Wu, and Y. Yang, Effects of the temperature and initial hydrogen pressure on the isomerization reaction in heavy oil slurry-phase hydrocracking. Energy & Fuels, 2015. 29(2): p. 626-633.
    48. Wang, C., Z. Tian, L. Wang, R. Xu, Q. Liu, W. Qu, H. Ma, and B. Wang, One‐Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel‐Range Alkanes. ChemSusChem, 2012. 5(10): p. 1974-1983.
    49. Braun-Unkhoff, M., T. Kathrotia, B. Rauch, and U. Riedel, About the interaction between composition and performance of alternative jet fuels. CEAS Aeronautical Journal, 2016. 7(1): p. 83-94.
    50. Vozka, P., P. Šimáček, and G. Kilaz, Impact of HEFA Feedstocks on Fuel Composition and Properties in Blends with Jet A. Energy & Fuels, 2018. 32(11): p. 11595-11606.
    51. Hsu, K.-H., W.-C. Wang, and Y.-C. Liu, Experimental studies and techno-economic analysis of hydro-processed renewable diesel production in Taiwan. Energy, 2018. 164: p. 99-111.
    52. Cheng-Han Lin, Yu-Kai Chen, and W.-C. Wang, The Production of Bio-jet Fuel from Glyceride-based Oil. 2019.

    下載圖示 校內:2024-06-30公開
    校外:2024-06-30公開
    QR CODE