| 研究生: |
林成翰 Lin, Cheng-Han |
|---|---|
| 論文名稱: |
一步法鎳觸媒加氫處理棕櫚油之替代航空燃油製程 One-step Hydro-conversion of Palm Oil into Renewable Jet Fuels over Ni-based Catalysts |
| 指導教授: |
王偉成
Wang, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 替代航空燃油 、加氫處理 、鎳基觸媒 、SAPO-11沸石 、檸檬酸 、磷鎢酸水合物 |
| 外文關鍵詞: | Renewable jet fuel, Hydro-conversion, Ni-based catalyst, SAPO-11 zeolite, Citric acid, Phosphotungstic acid hydrate |
| 相關次數: | 點閱:54 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加氫處理三酸甘油酯生產替代航空燃油在生質燃料扮演重要角色,並於有效減少溫室氣體排放方面獲得關注,本研究在反應條件為溫度380至420℃、壓力38至59 bar和液時空速0.5至2 h-1情況下,進行了以NiAg負載在SAPO-11沸石上對棕櫚油直接轉化成替代航空燃油的實驗,另外,觸媒特性使用了XRD、TEM、N2吸附-脫附、TG和Py-FTIR儀器進行檢測,實驗結果得知NiAg/SAPO-11觸媒在檸檬酸和磷鎢酸的輔助下,加氫脫氧、加氫裂解和加氫異構化活性均有不錯的表現,影響轉化率、選擇性和異構烷烃含量的關鍵主要和觸媒的反應溫度、金屬分佈、酸含量以及孔洞結構有關。除此之外,為了確保燃油符合能ASTM D7655規範,使用了GC-MS/FID和閃火點檢測儀對燃油特性進行分析,在最佳的反應條件下,分別獲得了100%的轉化率、84%的選擇性、2.1的異構烷烃-正烷烃比、產率72%、芳香族含量7%和閃火點58℃。
Hydro-conversion of triglyceride to renewable jet fuel (HRJ) plays an important role in drop-in aviation fuels and has drawn the attention of scholars because of its potential to reduce aircraft pollution and mitigate greenhouse gas emissions. A one-step direct-conversion of palm oil into HRJ over NiAg supported on SAPO-11 zeolite under the reaction conditions at 380-420℃, 38-59 bar, and 0.5-2 h-1 was investigated in this paper. Also, the properties of the catalysts were characterized using XRD, TEM, N2 adsorption-desorption, TG and Py-FTIR. The NiAg/SAPO-11 catalyst showed good performance in terms of hydro-processing, hydro-cracking and hydro-isomerization activities with the assistance of citric acid (CA) and phosphotungstic acid hydrate (HPW). The key to high conversion, high selectivity, and high iso-alkane content depended mostly on the reaction temperature, metal dispersion, acid content, and the pore structures of the zeolite. Furthermore, the fuel properties were tested in a GC-MS/FID and flash point tester to ensure that they met the ASTM D7655 specifications. Under the optimal reaction conditions, a conversion of 100%, selectivity of 84%, an I-to-N ratio of 2.1, a yield of 72%, an aromatics content of 7%, and a flash point of 58℃ were obtained.
1. Rosillo-Calle, F., S. Teelucksingh, D. Thrän, and M. Seiffert, The Potential Role of Biofuels in Commercial Air Transport-Biojetfuel (No. Task 40: Sustainable International Bioenergy trade). IEA, Paris, 2012.
2. ExxonMobil. The Outlook for Energy: A view to 2040. 2016 [cited 2019 13.04]; Available from: https://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf.
3. Van Ruijven, B. and D.P. Van Vuuren, Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy, 2009. 37(11): p. 4797-4808.
4. IEA. Key World energy statistics 2016. 2016 [cited 2019 13.04]; Available from: http://large.stanford.edu/courses/2017/ph241/kwan1/docs/KeyWorld2016.pdf.
5. IATA. Resolution on the implementation of the aviation "CNG2020" strategy. 2010 [cited 2019 13.04]; Available from: https://www.iata.org/pressroom/pr/documents/agm69-resolution-cng2020.pdf.
6. IEA. Technology roadmap biofuels for transport: International Energy Agency. 2011 [cited 2019 13.04]; Available from: https://www.fiva.org/wp-content/uploads/Technology-Biofuels-for-Transport.pdf.
7. Edwards, T., D. Minus, W. Harrison, E. Corporan, M. DeWitt, S. Zabarnick, and L. Balster. Fischer-Tropsch Jet Fuels-Characterization for Advanced Aerospace Applications. in 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. 2004.
8. Krár, M., S. Kovács, D. Kalló, and J. Hancsók, Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Bioresource technology, 2010. 101(23): p. 9287-9293.
9. Kubička, D. and L. Kaluža, Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 2010. 372(2): p. 199-208.
10. Şenol, O., T.-R. Viljava, and A. Krause, Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catalysis Today, 2005. 100(3-4): p. 331-335.
11. Liu, S., Q. Zhu, Q. Guan, L. He, and W. Li, Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource technology, 2015. 183: p. 93-100.
12. Coonradt, H.L. and W.E. Garwood, Mechanism of hydrocracking. Reactions of Paraffins and Olefins. Industrial & Engineering Chemistry Process Design and Development, 1964. 3(1): p. 38-45.
13. Deldari, H., Suitable catalysts for hydroisomerization of long-chain normal paraffins. Applied Catalysis A: General, 2005. 293: p. 1-10.
14. Blasco, T., A. Chica, A. Corma, W. Murphy, J. Agúndez-Rodríguez, and J. Pérez-Pariente, Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis, 2006. 242(1): p. 153-161.
15. Walendziewski, J. and B. Pniak, Synthesis, physicochemical properties and hydroisomerization activity of SAPO-11 based catalysts. Applied Catalysis A: General, 2003. 250(1): p. 39-47.
16. Shahinuzzaman, M., Z. Yaakob, and Y. Ahmed, Non-sulphide zeolite catalyst for bio-jet-fuel conversion. Renewable and Sustainable Energy Reviews, 2017. 77: p. 1375-1384.
17. Ooi, Y.-S. and S. Bhatia, Aluminum-containing SBA-15 as cracking catalyst for the production of biofuel from waste used palm oil. Microporous and Mesoporous Materials, 2007. 102(1-3): p. 310-317.
18. Twaiq, F.A., N.A. Zabidi, and S. Bhatia, Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Industrial & engineering chemistry research, 1999. 38(9): p. 3230-3237.
19. Congxin, W., L. Qianhe, L. Xuebin, Y. Lijun, L. Chen, W. Lei, W. Bingchun, and T. Zhijian, Influence of reaction conditions on one-step hydrotreatment of lipids in the production of iso-alkanes over Pt/SAPO-11. Chinese Journal of Catalysis, 2013. 34(6): p. 1128-1138.
20. Lutz, W., R. Kurzhals, S. Sauerbeck, H. Toufar, J.-C. Buhl, T. Gesing, W. Altenburg, and C. Jäger, Hydrothermal stability of zeolite SAPO-11. Microporous and Mesoporous Materials, 2010. 132(1-2): p. 31-36.
21. Liu, Q., H. Zuo, Q. Zhang, T. Wang, and L. Ma, Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts. Chinese Journal of Catalysis, 2014. 35(5): p. 748-756.
22. Products, A.C.D.o.P. and Lubricants, Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. 2014: ASTM International.
23. Bester, N. and A. Yates. Assessment of the operational performance of fischer-tropsch synthetic-paraffinic kerosene in a T63 gas turbine compared to conventional Jet A-1 fuel. in ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2009. American Society of Mechanical Engineers.
24. Rabaev, M., M.V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, and M. Herskowitz, Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. Fuel, 2015. 161: p. 287-294.
25. Corporan, E., T. Edwards, L. Shafer, M.J. DeWitt, C. Klingshirn, S. Zabarnick, Z. West, R. Striebich, J. Graham, and J. Klein, Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy & Fuels, 2011. 25(3): p. 955-966.
26. Duong, L.H., I.K. Reksowardojo, T.H. Soerawidjaja, D.N. Pham, and O. Fujita, The sooting tendency of aviation biofuels and jet range paraffins: effects of adding aromatics, carbon chain length of normal paraffins, and fraction of branched paraffins. Combustion Science and Technology, 2018. 190(10): p. 1710-1721.
27. Zheng, S., M. Kates, M. Dubé, and D. McLean, Acid-catalyzed production of biodiesel from waste frying oil. Biomass and bioenergy, 2006. 30(3): p. 267-272.
28. Liu, Q., H. Zuo, T. Wang, L. Ma, and Q. Zhang, One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts. Applied Catalysis A: General, 2013. 468: p. 68-74.
29. Yang, L., S. Xing, H. Sun, C. Miao, M. Li, P. Lv, Z. Wang, and Z. Yuan, Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes. Fuel Processing Technology, 2019. 187: p. 52-62.
30. Cheng, J., Z. Zhang, X. Zhang, J. Liu, J. Zhou, and K. Cen, Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 2019. 245: p. 384-391.
31. Fan, K., J. Liu, X. Yang, and L. Rong, Hydrocracking of Jatropha oil over Ni-H3PW12O40/nano-hydroxyapatite catalyst. International Journal of Hydrogen Energy, 2014. 39(8): p. 3690-3697.
32. Moon, K.-S., H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. Journal of Electronic Materials, 2005. 34(2): p. 168-175.
33. Saggese, C., A.V. Singh, X. Xue, C. Chu, M.R. Kholghy, T. Zhang, J. Camacho, J. Giaccai, J.H. Miller, and M.J. Thomson, The distillation curve and sooting propensity of a typical jet fuel. Fuel, 2019. 235: p. 350-362.
34. Pires, A.P., Y. Han, J. Kramlich, and M. Garcia-Perez, Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResources, 2018. 13(2): p. 2632-2657.
35. Lee, S.W., S.D. Park, S. Kang, I.C. Bang, and J.H. Kim, Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 2011. 54(1-3): p. 433-438.
36. Scaldaferri, C.A. and V.M.D. Pasa, Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step. Chemical Engineering Journal, 2019. 370: p. 98-109.
37. Zhang, Q., K. Long, J. Wang, T. Zhang, Z. Song, and Q. Lin, A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2017. 42(20): p. 14103-14114.
38. Li, X., Y. Chen, Y. Hao, X. Zhang, J. Du, and A. Zhang, Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renewable Energy, 2019. 139: p. 551-559.
39. Chen, Z., X. Li, Y. Xu, Y. Dong, W. Lai, W. Fang, and X. Yi, Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether. Catalysis Communications, 2018. 103: p. 1-4.
40. Sahoo, S.K., S.S. Ray, and I. Singh, Structural characterization of coke on spent hydroprocessing catalysts used for processing of vacuum gas oils. Applied Catalysis A: General, 2004. 278(1): p. 83-91.
41. Huang, X., L. Wang, L. Kong, and Q. Li, Improvement of catalytic properties of SAPO-11 molecular sieves synthesized in H2O–CTAB–butanol system. Applied Catalysis A: General, 2003. 253(2): p. 461-467.
42. Pu, X., N.-w. Liu, and L. Shi, Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration. Microporous and Mesoporous Materials, 2015. 201: p. 17-23.
43. Hengsawad, T., C. Srimingkwanchai, S. Butnark, D.E. Resasco, and S. Jongpatiwut, Effect of Metal–Acid Balance on Hydroprocessed Renewable Jet Fuel Synthesis from Hydrocracking and Hydroisomerization of Biohydrogenated Diesel over Pt-Supported Catalysts. Industrial & Engineering Chemistry Research, 2018. 57(5): p. 1429-1440.
44. Song, X. and D. Zhang, Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells). Energy, 2014. 70: p. 223-230.
45. Dabiri, M. and S. Bashiribod, Phosphotungstic Acid: An Efficient, Cost-effective and Recyclable Catalyst for the Synthesis of Polysubstituted Quinolines. Molecules, 2009. 14(3): p. 1126-1133.
46. Xing, S., P. Lv, J. Wang, J. Fu, P. Fan, L. Yang, G. Yang, Z. Yuan, and Y. Chen, One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways. Physical Chemistry Chemical Physics, 2017. 19(4): p. 2961-2973.
47. Du, H., D. Liu, M. Li, P. Wu, and Y. Yang, Effects of the temperature and initial hydrogen pressure on the isomerization reaction in heavy oil slurry-phase hydrocracking. Energy & Fuels, 2015. 29(2): p. 626-633.
48. Wang, C., Z. Tian, L. Wang, R. Xu, Q. Liu, W. Qu, H. Ma, and B. Wang, One‐Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel‐Range Alkanes. ChemSusChem, 2012. 5(10): p. 1974-1983.
49. Braun-Unkhoff, M., T. Kathrotia, B. Rauch, and U. Riedel, About the interaction between composition and performance of alternative jet fuels. CEAS Aeronautical Journal, 2016. 7(1): p. 83-94.
50. Vozka, P., P. Šimáček, and G. Kilaz, Impact of HEFA Feedstocks on Fuel Composition and Properties in Blends with Jet A. Energy & Fuels, 2018. 32(11): p. 11595-11606.
51. Hsu, K.-H., W.-C. Wang, and Y.-C. Liu, Experimental studies and techno-economic analysis of hydro-processed renewable diesel production in Taiwan. Energy, 2018. 164: p. 99-111.
52. Cheng-Han Lin, Yu-Kai Chen, and W.-C. Wang, The Production of Bio-jet Fuel from Glyceride-based Oil. 2019.