簡易檢索 / 詳目顯示

研究生: 劉謦賢
Liu, Ching-Hsien
論文名稱: 井壓下降及上升資料整合分析之研究
Integrated Analysis of Pressure Drawdown and Buildup Test Data
指導教授: 謝秉志
Hsieh, Bieng-Zih
共同指導教授: 林再興
Lin, Zsay-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 206
中文關鍵詞: 暫態壓力分析典型曲線分析半對數作圖分析
外文關鍵詞: Transient pressure analysis, Type-curve analysis, Semi-log plot analysis
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 井壓測試分析中,一般將井壓下降及上升資料各別分析,比較少同時分析井壓下降及上升資料。本研究主要目的是建立井壓下降及上升資料整合分析之方法,包括理論推導的半對數作圖法之方程式,以及典型曲線分析法之建立,以發展更完整的井壓測試分析應用模式。
    本研究先建立及驗證地層數值模式後,再繪製整合井壓下降及上升典型曲線。利用所建立之數值模式來模擬現場案例之壓力和流率資料,並利用模擬之壓力和流率資料作半對數圖和典型曲線分析。
    本研究所獲得之主要結論為:(1)本研究推導出整合壓力下降及上升方程式和文獻中所提及的整合半對數圖分析方程式一致,並可用於整合壓力下降及上升半對數作圖分析中;(2)本研究發展整合壓力下降及上升典型曲線以及其分析之方法;(3)整合壓力下降及上升半對數作圖分析和典型曲線分析可成功分析定流率或變流率生產井的壓力下降及上升資料;(4)在變流率測試分析案例下,利用整合壓力下降及上升半對數作圖分析法,可達到相同方程式及直線作圖的整合分析,而其分析結果之準確度與傳統半對數作圖分析相當;(5)在變流率測試分析案例下,使用偽生產時間處理壓力上升資料並與整合壓力下降及上升典型曲線分析,相較於其它處理壓力上升資料方式,不論是在利用地表或井底流率資料來分析時,其分析之結果皆較準確;(6)將井壓下降和上升資料合併起來分析,可提供分析者在分析時更多的資訊,有助於分析時的判斷和分析效率的提升。

    The general method in well-testing analysis is to separately analyze the pressure drawdown and buildup data; it is rare to combine the pressure drawdown and buildup data for analysis. We developed an improved and integrated method of analyzing pressure drawdown and buildup data; it includes a theoretically derived equation for semi-log plot analysis as well as type-curve analysis.
    We first established and then confirmed a numerical model of a reservoir, before drawing the type-curves of integrated pressure drawdown and buildup. The numerical model was used to simulate field data that contained pressure and flow-rate data.
    The conclusions from this study were that (1) the theoretically derived equation of integrated pressure drawdown and buildup, which is the same as the equation of the unified semi-log plot analysis in literatures, can be used for integrated semi-log plot analysis of pressure drawdown and buildup; (2) the type-curves of integrated pressure drawdown and buildup were developed and their applications were also described; (3) semi-log plot analysis and type-curves analysis of integrated pressure drawdown and buildup can be used when analyzing a constant or variable flow-rate well; (4) in a variable flow-rate well, the results’ accuracy of the integrated semi-log plot analysis correspond almost exactly to the results of traditional semi-log plot analysis; (5) in a variable flow-rate well, the results of a type-curve analysis of integrated pressure drawdown and buildup were more accurate than other methods, no matter what surface or sandface flow-rate data the analysis used; (6) integrating the pressure drawdown and buildup data provides more useful information in a pressure test analysis. The integrated method improved the interpretation and the efficiency of analysis.

    摘要 - I Abstract - III 誌謝 - IV 目錄 - VI 表目錄 - IX 圖目錄 - XI 符號說明 - XXV 第一章 前言 - 1 1-1 研究背景 - 1 1-2 研究目的 - 3 第二章 文獻回顧 - 4 2-1 井壓測試分析 - 4 2-2 整合井壓測試 - 9 第三章 理論基礎 - 11 3-1 多孔介質流體流動的擴散方程式 - 11 3-2定流率暫態壓力解析解 - 12 3-3變流率暫態壓力解析解 - 14 3-4整合壓力下降及上升方程式 - 17 3-5整合壓力下降及上升典型曲線 - 19 第四章 研究方法 - 21 第五章 數值模式建立與驗證 - 24 第六章 結果 - 27 6-1整合壓力下降及上升半對數作圖分析 - 27 6-2整合壓力下降及上升典型曲線之建立 - 29 6-3定流率整合壓力下降及上升典型曲線分析 - 32 第七章 討論 - 33 7-1整合壓力下降及上升典型曲線唯一性問題 - 33 7-2變地表流率之半對數作圖分析 - 35 7-3壓力上升典型曲線分析變地表流率之井壓力上升資料 - 39 7-4變流率井壓測試案例 - 43 7-4-1整合壓力下降及上升典型曲線之分析 - 45 7-4-2整合壓力下降及上升半對數作圖分析 - 57 7-5建議適用於整合壓力下降及上升典型曲線之變流率井壓測試案例 - 63 7-6負膚表因子模擬結果之改善 - 63 7-7使用整合壓力下降及上升半對數作圖作流率之校正 - 64 7-8整合壓力下降及上升典型曲線分析與傳統典型曲線分析之比較 - 65 7-9整合壓力下降及上升半對數作圖分析與傳統半對數作圖分析之比較 - 66 第八章 結論與建議 - 69 8-1結論 - 69 8-2建議 - 70 參考文獻 - 71 附錄 - 75 附錄A 多孔介質流體流動擴散方程式的推導 - 75 附錄B 傳統半對數作圖分析 - 80 附錄B-1定流率半對數作圖法 - 80 附錄B-2變流率半對數作圖法 - 83 附錄C 井筒儲集效應 - 85 附錄D 典型曲線分析 - 88 附錄E 使用線源暫態壓力解析解建立整合壓力下降及上升典型曲線 - 89 附錄F 數值微分程式碼 - 93 附錄G 變流率井壓測試案例以傳統半對數作圖分析 - 96

    1. Agarwal, R.G., Al-Hussainy, R., and Ramey, H.J. Jr. (1970), “An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow. I: Analytical Treatment,” SPEJ, 10 (3) pp. 279~290. DOI: 10.2118/2466-PA.
    2. Agarwal, R.G., Carter, R.D., and Pollock, C.B. (1979), “Evaluation and Performance Prediction of Low-Permeability Gas Wells Stimulated by Massive Hydraulic Fracturing,” JPT, 31 (3) pp.362~372. DOI: 10.2118/6838-PA.
    3. Ahmed, T. and McKinney, P.D. (2005), Advanced Reservoir Engineering, Gulf Professional Publishing/Elsevier, Burlington, MA, USA. 421 pp.
    4. Bourdet, D.P., Whittle, T.M., Douglas, A.A., and Pirard, Y.M. (1983), “A New Set of Type Curves Simplifies Well Test Analysis,” World Oil, 196 (6) pp.95~106.
    5. Bourdet, D.P. (1985), “Pressure Behavior of Layered Reservoirs With Crossflow,” Paper SPE 13628 presented at the SPE California Regional Meeting, Bakersfield, California, pp.27-29 March. DOI: 10.2118/13628-MS.
    6. Bourdet, D., Ayoub, J.A., and Pirard, Y.M. (1989), “Use of Pressure Derivative in Well Test Interpretation,” SPE Formation Evaluation, 4 (2) pp.293~302. DOI: 10.2118/12777-PA.
    7. Breit, V.S., Bishop, K.A., and Swift, G.W. (1976), “A Unified Treatment of the Effects of Well bore Storage and Variable Sandface Flowrate on Gas Well Drawdown and Buildup Analysis,” SPE Paper 6135 presented at the SPE 51st Annual Meeting, New Orleans.
    8. Brenna, L. S. (1986), “Computer generation of type curves,” Stanford Geothermal Program Report SGP-TR-105, Stanford University.
    9. Brons, F. and Marting, V.E. (1961), “The Effect of Restricted Fluid Entry on Well Productivity,” JPT, 13 (2) pp.172~174; Trans., AIME 222. DOI: 10.2118/1322-G.
    10. Chaudhry, A.U. (2004), Oil Well Testing Handbook, Advanced TWPSOM Petroleum Systems, Inc. Houston, Texas, USA. 670 pp.
    11. Chu, W.C. and Shank, G.D. (1993), “A New Model for a Fractured Well in a Radial, Composite Reservoir,” SPEFE, 8 (3) pp.225~232. DOI: 10.2118/20579-PA.
    12. Clark, D.G. and Van Golf-Racht, T.D. (1985), “Pressure-Derivative Approach to Transient Test Analysis: A High-Permeability North Sea Reservoir Example,” JPT, 37 (11) pp.2023~2039. DOI: 10.2118/12959-PA.
    13. Dake, L.P. (1978), Fundamentals of Reservoir Engineering, Elsevier, Amsterdam, Oxford, New York. USA. 443 pp.
    14. Daviau, F., Mouronval, G., Bourdarot, G., and Curutchet P. (1988), “Pressure Analysis for Horizontal Wells,” SPEFE, 3 (4) pp.716~724. DOI: 10.2118/14251-PA.
    15. Earlougher, R.C. Jr. (1977), Advanced in Well Test Analysis, Monograph Series, Vol. 5, Society of Petroleum Engineers, Dallas, Texas, USA. 264 pp.
    16. Gringarten, A.C. and Ramey, H.J. Jr. (1973), “The Use of Source and Green’s Functions in Solving Unsteady-Flow Problems in Reservoirs,” SPEJ, 13 (5) pp.285~296. DOI: 10.2118/3818-PA.
    17. Gringarten, A.C. and Ramey, H.J. Jr. (1974a), “Unsteady-State Pressure Distribution Created by a Well With a Single Horizontal Fracture, Partial Penetration, or Restricted Entry,” SPEJ, 14 (4) pp.413~426. DOI: 10.2118/3819-PA.
    18. Gringarten, A.C., Ramey, H.J. Jr., and Raghavan, R. (1974b), “Unsteady-State Pressure Distribution Created by a Well With a Single Infinite-Conductivity Vertical Fracture,” SPEJ, 14 (4) pp.347~360. DOI: 10.2118/4051-PA.
    19. Gringarten, A.C., Ramey, H.J. Jr., and Raghavan, R. (1975), “Applied Pressure Analysis for Fractured Wells,” JPT, 27 (7) pp.887~892. DOI: 10.2118/5496-PA.
    20. Gringarten, A.C., Bourdet D.P., Landel, P.A., and Kniazeff, V.J. (1979), “A Comparison Between Different Skin and Wellbore Storage Type- Curves for Early-Time Transient Analysis,” Paper SPE 8205 presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, 23-26 September. DOI: 10.2118/8205-MS.
    21. Gringarten, A.C. (2008), “From Straight Lines to Deconvolution: The Evolution of the State of the Art in Well Test Analysis,” SPE Reservoir Evaluation & Engineering, 11 (1) pp.41-62. DOI: 10.2118/102079-PA.
    22. Horner, D.R. (1951), Pressure Build-Ups in Wells, Proc., Third World Petroleum Congress, The Hague, Section II, 503-523, 28 May-6 June. Also, (1967), Pressure Analysis Methods, Reprint Series, SPE, Richardson, Texas 9: 25-43.
    23. Jaggernauth D.J., Lin Z.S., Lescarboura J.A., Bishop K.A., Clark C.R., and Shift G.W. (1981), “Unified Analysis of Drawdown and Buildup Data for Physical Model Reservoir Flow With Producing Well at Center of Vertical Fracture” SPE Journal, 21 (3) pp.379~389. DOI: 10.2118/9402-PA.
    24. Joseph, J., Bocock, A., Nai-Fu, F., and Gui, L.T. (1986), “A Study of Pressure Transient Behavior in Bounded Two-Layered Reservoirs: Shengli Field, China,” Paper SPE 15418 presented at the SPE Annual Technical Conference and Exhibition, New Orleans, 5-8 October. DOI: 10.2118/15418-MS.
    25. Kazemi, H. (1975), “A Reservoir Simulator for Studying Productivity Variation and Transient Behavior of a Well in a Reservoir Undergoing Gas Evolution,” JPT, 27 (11) pp.1401~1412; Trans., AIME 259. DOI: 10.2118/5108-PA.
    26. Kuchuk, F.J. and Kirwan, P.A. (1987), “New Skin and Wellbore Storage Type Curves for Partially Penetrating Wells,” SPEFE, 2 (4) pp.546~554. DOI: 10.2118/11676-PA.
    27. Lee, J., (1982), Well Testing, Society of Petroleum Engineers of the AIME, Dallas, Texas, USA. 159 pp.
    28. Matthews, C.S., Brons, F., and Hazebroek, P. (1954), “A Method for Determination of Average Pressure in a Bounded Reservoir,” Trans., AIME, 201 pp.182~191.
    29. Miller, C.C., Dyes, A.B., and Hutchinson, C.A. (1950), “The Estimation of Permeability and Reservoir Pressure From Bottom Hole Pressure Build-Up Characteristics,” Trans., AIME, 189 pp.91~104. DOI: 10.2118/950091-G.
    30. Nashawa, I.S. (2003), “Pressure Transient Analysis for Wells With Variable Sandface Flow Rate,” JCPT, 42 (7) pp.42~53. DOI: 10.2118/03-07-04.
    31. Odeh, A.S. and Jones, L.G. (1965), “Pressure Drawdown Analysis, Variable-Rate Case,” JPT, 17 (8) pp.960~964. DOI: 10.2118/1084-PA.
    32. Odeh, A.S. and Selig, F. (1963), “Pressure Build-Up Analysis, Variable-Rate Case,” JPT, 15 (7) pp.790~794. Trans., AIME 288. Also Reprint Series, No. 9. (1967), “Pressure analysis method,” Society of Petroleum Engineering of AIME, Dallas, Texas. pp.131~135.
    33. Raghavan, R., Reynolds, A.C. Jr., and Meng, H. (1982), “Analysis of Pressure Buildup Data Following a Short Flow Period,” JPT, 34 (4) pp.904~916. DOI: 10.2118/9290-PA.
    34. Ramey, H.J. Jr. (1970), “Short-Time Well Test Data Interpretation in the Presence of Skin Effect and Wellbore Storage,” JPT, 22 (1) pp.97~104. DOI: 10.2118/2336-PA.
    35. Ridley, T.P. (1975), “The Unified Analysis of Well Tests,” SPE Paper 5587 presented at the Society of Petroleum Engineers of AIME Meeting. DOI: 10.2118/5587-MS.
    36. Theis, C.V. (1935), “The Relationship Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge Using Ground-Water Storage,” Trans., American Geophysical Union, Part 2, pp.519~524. Also, (1980), “Pressure Transient Testing Methods,” Reprint Series. Richardson, Texas: SPE 14 pp.27~32.
    37. Warren, J.E. and Root, P.J. (1963,) “The Behavior of Naturally Fractured Reservoirs,” SPEJ, 3 (3) pp.245~255; Trans., AIME 228. DOI: 10.2118/426-PA.
    38. Van Everdingen, A.F. and Hurst, W. (1949), “The Application of the Laplace Transformation to Flow Problems in Reservoirs,” Trans., AIME, 186 pp.305~324.

    下載圖示 校內:2016-06-24公開
    校外:2016-06-24公開
    QR CODE