簡易檢索 / 詳目顯示

研究生: 蕭宇良
Hsiao, Yu-Liang
論文名稱: 發展多孔性氧化鋅奈米線以提升奈米發電機之效能
Development of porous ZnO nanowire arrays for enhancing piezoelectric nanogenerators
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 多孔性氧化鋅壓電奈米發電機
外文關鍵詞: Porous ZnO, Piezoelectric, Nanogenerator
相關次數: 點閱:86下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用COMSOL模擬加上實驗驗證來探討孔洞對氧化鋅奈米線之壓電性質的影響。本實驗步驟如下,先利用Sputter在矽基板上鍍一層ZnO seed layer,再使用化學浴沉積法成長氧化鋅奈米柱,通過改變前驅液的反應時間,可有效控制氧化鋅奈米線之長度,接著使用高溫爐管進行氫氣退火,透過調整氫氣退火時間來控制氧化鋅奈米線之孔隙率。
    利用貴重儀器中心的掃描式電子顯微鏡(HITACHI SU8000,SEM)來觀察不同參數對氧化鋅奈米線之形貌、直徑、長度及孔隙率的影響,再使用穿透式電子顯微鏡(JEOL JEM-2100F-CS,TEM)來觀察氧化鋅奈米線內外孔之分布及數量,並使用壓電力顯微鏡(PFM)來量測孔洞對壓電係數之影響,最後使用原子力顯微鏡(HITACHI SPA400,AFM)分析孔隙率對壓電效應的影響,其結果與COMSOL模擬之趨勢呈現一致性。

    This study investigates the piezopotential of porous & non-porous ZnO nanowire arrays, and the porous one shows the ultra-high enhancement from COMSOL simulations and experimental results. First, we growth ZnO seed layer on silicon substrate by sputter in room temperature, then growth ZnO NWs by chemical bath deposition method, followed by hydrogen annealing to create surface pores and inner pores. We use SEM(HITACHI SU8000) to see the morphology, including diameter, length, and porosity, then use TEM(JEOL JEM-2100F-CS) to see inner pores and surface roughness. From the COMSOL result, piezopotential is proportional to porosity both in normal and lateral force, which is consistence with AFM measurements.

    中文摘要 i Abstract ii 致謝 iii Table of Contents iv Chapter 1. Motivations and Introduction to ZnO 1 1.1 Motivations 1 1.2 Introduction to ZnO 3 1.2.1 Structural Properties of ZnO 3 1.2.2 Physical Properties of ZnO 4 Chapter 2. Literature Review 6 2.1 Introduction to piezoelectricity 6 2.2 ZnO nanowire arrays grown by chemical bath deposition method 7 2.3 Hydrogen treatment with ZnO NWs 12 2.4 Fundamental theory of piezoelectric nanogenerator 14 Chapter 3. Experiment setup 17 3.1 Experimental Flow Chart 17 3.2 Growth of ZnO nanowire arrays 18 3.2.1 Substrate cleaning 18 3.2.2 Sputtering 18 3.2.3 Chemical bath deposition 18 3.2.4 Hydrogen annealing 18 3.3 Analytical Instruments 20 3.3.1 High Resolution Scanning Electron Microscope, HR-SEM 20 3.3.2 Transmission Electron Microscope, TEM 21 3.3.3 Scanning Transmission Electron Microscope, STEM 21 3.3.4 X-ray Diffraction (XRD) 23 3.3.5 Scanning probe microscope, SPM 24 3.3.5.1 Conductive atomic force microscope, C-AFM 24 3.3.5.2 Piezoresponse force microscope, PFM 25 3.3.6 Photoluminescence (PL) Spectroscopy 27 3.3.7 COMSOL simulation 28 Chapter 4. Results & Discussion 29 4.1 SEM characterization 29 4.1.1 Length of ZnO NW arrays 29 4.1.2 Diameter and density of ZnO NW arrays 29 4.1.3 Porosity of ZnO NW arrays 30 4.2 TEM characterization 33 4.2.1 pore classification 33 4.2.2 porosity quantitation 33 4.2.3 Pore analysis 34 4.3 XRD results 37 4.4 Raman results 39 4.5 Pore formation models 40 4.6 Simulation 44 4.6.1 Pore effect 44 4.6.2 Porosity effect 46 4.6.3 Force-dependent of piezopotential 48 4.7 Piezoresponse force microsocpe(PFM) results 50 4.8 Current mapping 54 Chapter 5. Conclusion and future aspects 60 Chapter 6. Reference 61

    [1] J. E. Jacobs and K. J. Reimann, "PIEZOELECTRIC EFFECT IN CDSE FIELD-EFFECT TRANSISTORS," Proceedings of the Institute of Electrical and Electronics Engineers, vol. 58, no. 2, pp. 246-&, 1970.
    [2] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano Letters, vol. 6, no. 12, pp. 2768-2772, Dec 2006.
    [3] M. J. Zhu, N. Inomata, N. Adachi, A. Sakurai, M. Nomura, and T. Ono, "High-Gauge Factor Strain Sensor Based on Piezoelectric Aluminum Nitride Coupled to MOSFET," Ieee Sensors Journal, vol. 19, no. 10, pp. 3626-3632, May 2019.
    [4] J. Shi et al., "Interface Engineering by Piezoelectric Potential in ZnO-Based Photoelectrochemical Anode," Nano Letters, vol. 11, no. 12, pp. 5587-5593, Dec 2011.
    [5] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, no. 5771, pp. 242-246, Apr 2006.
    [6] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science, vol. 316, no. 5821, pp. 102-105, Apr 2007.
    [7] A. Waseem et al., "Effect of crystal orientation of GaN/V2O5 core-shell nanowires on piezoelectric nanogenerators," Nano Energy, vol. 60, pp. 413-423, Jun 2019.
    [8] U. Ozgur et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, no. 4, Aug 2005, Art. no. 041301.
    [9] F. Ali, W. Raza, X. L. Li, H. Gul, and K. H. Kim, "Piezoelectric energy harvesters for biomedical applications," Nano Energy, vol. 57, pp. 879-902, Mar 2019.
    [10] L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices," Materials Today, vol. 10, no. 5, pp. 40-48, May 2007.
    [11] K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," Journal of Materials Chemistry, vol. 14, no. 16, pp. 2575-2591, 2004.
    [12] M. D. Wang, C. C. Xing, K. Cao, L. Meng, and J. B. Liu, "Alignment-controlled hydrothermal growth of well-aligned ZnO nanorod arrays," Journal of Physics and Chemistry of Solids, vol. 75, no. 7, pp. 808-817, Jul 2014.
    [13] M. Guo, P. Diao, and S. M. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, no. 6, pp. 1864-1873, Jun 2005.
    [14] V. F. Rivera et al., "Length-Dependent Charge Generation from Vertical Arrays of High-Aspect-Ratio ZnO Nanowires," Chemistry-a European Journal, vol. 19, no. 43, pp. 14665-14674, Oct 2013.
    [15] W. Kim et al., "Surface and Internal Reactions of ZnO Nanowires: Etching and Bulk Defect Passivation by H Atoms," Journal of Physical Chemistry C, vol. 116, no. 30, pp. 16093-16097, Aug 2012.
    [16] Z. L. Wang, "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al," Advanced Materials, vol. 21, no. 13, pp. 1311-1315, Apr 2009.
    [17] M. M. Hassan, "16 - Antimicrobial Coatings for Textiles," in Handbook of Antimicrobial Coatings, A. Tiwari, Ed.: Elsevier, 2018, pp. 321-355.
    [18] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, no. 1, Mar 2009, Art. no. 013001.
    [19] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, no. 1, pp. 49-56, Jul 2006.
    [20] S. Wolf, E. Shimoni, M. Elbaum, and L. Houben, "STEM Tomography in Biology," 2018, pp. 33-60.
    [21] i. Encyclopædia Britannica, "Bragg law," 2016.
    [22] K. C. Morton, M. A. Derylo, and L. A. Baker, "Conductive Atomic Force Microscopy Probes from Pyrolyzed Parylene," Journal of the Electrochemical Society, vol. 159, no. 7, pp. H662-H667, 2012.
    [23] M. Minary-Jolandan, R. A. Bernal, I. Kujanishvili, V. Parpoil, and H. D. Espinosa, "Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D," Nano Letters, vol. 12, no. 2, pp. 970-976, Feb 2012.
    [24] G. Ledoux, O. Guillois, F. Huisken, B. Kohn, D. Porterat, and C. Reynaud, "Crystalline silicon nanoparticles as carriers for the Extended Red Emission," Astronomy & Astrophysics, vol. 377, no. 2, pp. 707-720, Oct 2001.
    [25] R. A. Asmar et al., "Characterization and Raman investigations on high-quality ZnO thin films fabricated by reactive electron beam evaporation technique," Journal of Crystal Growth, vol. 279, no. 3-4, pp. 394-402, Jun 2005.
    [26] A. Khan, Raman Spectroscopic Study of the ZnO Nanostructures. 2010.
    [27] K. H. Tam et al., "Defects in ZnO nanorods prepared by a hydrothermal method," Journal of Physical Chemistry B, vol. 110, no. 42, pp. 20865-20871, Oct 2006.
    [28] A. Kvasov et al., "Piezoelectric enhancement under negative pressure," Nature Communications, vol. 7, Jul 2016, Art. no. 12136.
    [29] D. Tamvakos et al., "Piezoelectric properties of template-free electrochemically grown ZnO nanorod arrays," Applied Surface Science, vol. 356, pp. 1214-1220, Nov 2015.
    [30] E. Broitman, M. Y. Soomro, J. Lu, M. Willander, and L. Hultman, "Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique," Physical Chemistry Chemical Physics, vol. 15, no. 26, pp. 11113-11118, 2013.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE