簡易檢索 / 詳目顯示

研究生: 邱仁傑
Chiou, Ren-Jie
論文名稱: 在無線行動式隨意網路上對多媒體通訊做保證服務品質之隨選混合多重路徑繞路協定
An On-demand Hybrid Multipath Routing Protocol for Multimedia Communication with QoS Guarantees in Mobile Ad Hoc Networks
指導教授: 蘇銓清
Sue, Chuan-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 73
中文關鍵詞: 多媒體串流交錯多重路徑節點不相交多重路徑多重路徑繞路協定氾濫法隨選繞路協定行動式隨意網路
外文關鍵詞: Multimedia communication, MANETs, Braided multipath, Multipath, AODV, DSR, Node-disjoint multipath
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動式隨意網路為沒有固定的基礎架構的無線網路,每一個無線節點可透過直接無線鏈結的方式通訊,或是利用中間節點以連續多點跳躍的無線鏈結方式來通訊。由於節點的任意地移動,使得網路的拓撲變動頻繁,因應這種網路特性需要設計一個有效率的繞路協定。在行動式隨意網路上AODV和DSR是兩個被廣為應用的隨選繞路協定,然而,之前的許多研究發現了兩者的限制。例如,當在傳輸封包的節點移動,節點之間因為距離過遠無法通訊而造成傳輸中斷,必須重新找尋路徑。一般來說,隨選繞路協定皆使用氾濫法來找尋路徑,而氾濫法會大量地浪費網路的頻寬。為了防止這樣的傳輸錯誤和減少氾濫法的使用,這篇論文提出一個隨選混合多重路徑繞路協定,它最大的特色是結合了節點不相交多重路徑和交錯多重路徑,透過理論分析和模擬結果,隨選混合多重路徑繞路協定可以減少氾濫法的使用頻率、提高封包傳輸率和縮短平均的點對點傳輸延遲。這篇論文還延伸隨選混合多路徑繞路協定對多媒體通訊做保證服務品質,我們提出一個多媒體串流分配方法,它依據多媒體串流的優先權,分配多媒體串流於不同的多路徑上,透過模擬結果顯示,隨選混合多路徑繞路協定利用多媒體串流分配方法對於多媒體通訊可達到較好的影像傳輸品質。

    A Mobile ad hoc network (MANET) is a collection of wireless mobile computers forming a temporary network without existing wire line infrastructures. Due to the dynamic nature of the network topology and resource constraints, designing an efficient routing in MANETs is challenging. AODV and DSR are two most widely studied on-demand ad hoc routing protocols with low routing overheads. However, previous studies have identified various limitations of these protocols. For example, whenever a node moves and its link breaks on the active route, it can cause a communication fault and then invokes a route discovery process. In general, on-demand protocols use query flooding to discover routes. Such flooding consumes a substantial portion of the network bandwidth. To tolerate communication faults and decrease flooding, this study explores the network redundancy through multipath routing. The designated on-demand hybrid multipath routing (OHMR) features a novel characteristics; it establishes the node-disjoint multipath and the braided multipath between a source-destination pair. Through theoretical analysis and simulation results, we show OHMR can reduce the frequency of route discoveries and achieve a higher packet delivery ratio. Furthermore, the average end-to-end delay for OHMR is shorter than single path, braided multipath and node-disjoint multipath routing schemes. We also extend OHMR with a multimedia traffic allocation strategy to classify multimedia sub-streams among multiple paths according to different priority levels. Our experiments show that the proposed protocol for multimedia communication can improve the performance of the fraction of decodable frames and achieve better performance in terms of video quality over the node-disjoint multipath.

    Contents 中文摘要 iv Abstract vi List of Tables xi List of Figures xii 1 Introduction 1 2 Background and Preliminaries 4 2.1 Multipath Routing 4 2.2 Multipath Transport 7 3 On-demand Hybrid Multipath Routing 9 3.1 Routing Table 10 3.2 OHMR Terminology 11 3.3 Control Packet Structures 13 3.3.1 Route Request (RREQ) Packet Structure 13 3.3.2 Route Reply (RREP) Packet Structure 14 3.3.3 Route Error (RERR) Packet Structure 14 3.4 Route Discovery 15 3.4.1 Generating Route Requests 15 3.4.2 Processing and Forwarding Route Requests 24 3.4.3 Route Selection Method 30 3.4.4 Generating Route Replies 32 3.4.5 Receiving and Forwarding Route Replies 32 3.5 Route Maintenance 36 4 Multimedia Traffic Allocation Strategy 41 4.1 Basic Concept of MPEG 41 4.2 Allocation Strategy 42 5 Performance Evaluations 49 5.1 Theoretical Analysis 49 5.1.1 Evaluation of Query Flooding Frequency 49 5.1.2 Numerical Results 56 5.2 Simulations with Constant Bit Rate Traffic 60 5.2.1 Simulations Environment 60 5.2.2 Results Analysis 61 5.3 Simulations with Multimedia Traffic 65 5.3.1 Simulation Environment 65 5.3.2 Results Analysis 67 6 Conclusions 70 Bibliography 71

    [1] E. Perkings, E. M. Belding-Royer, S. R. Das, “Ad Hoc On-Demand Distance Vector (AODV) Routing,” http://www.ietf.org/rfc/rfc3561.txt, IETF RFC, July 2003.

    [2] J. Broch, D. Johnson, and D. Maltz, “The Dynamic Source Routing Protocol for Mobile Ad hoc Networks (DSR),” http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt, IETF Internet draft, July 2004.

    [3] E. Perkings, E. M. Royer and S. R. Das, “Performance Comparison of Two On-Demand Routing Protocols for Ad Hoc Networks,” IEEE Personal Communications, pp. 16–28, February 2001.

    [4] S. J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc Networks,” IEEE ICC, pp. 3201-3205, June 2001.

    [5] A. Nasipuri, R. Castaneda, and S. R. Das, “Performance of Multipath Routing for On-demand protocols in Mobile Ad Hoc Networks,” ACM Mobile Networks and Applications (MONET), pp. 339-349, August 2001.

    [6] M. K. Marina, and S. R. Das, “On-demand Multipath Distance Vector Routing in Ad Hoc Networks,” IEEE International Conference on Network Protocols (ICNP), pp. 14-23, November 2001.

    [7] X. Li and L. Cuthbert, “On-demand node-disjoint multipath routing in wireless ad hoc networks,” IEEE International Conference on Local Computer Networks, pp. 419 – 420, November 2004.

    [8] B. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-Resilient, Energy-Efficient Multipath Routing in Wireless Sensor Networks,” Mobile Computing and Communications Review (MC2R), Vol. 4, no. 5, October 2001.

    [9] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for mobile wireless networks,” IEEE INFOCOM, pp. 1405–1413, 7-11 April 1997.

    [10] S. R. Das, R. Castañeda, J. Yan and R. Sengupta, “Comparative performance evaluation of routing protocols for mobile, ad hoc networks,” IC3N, pp. 153-161, 12-15 Oct. 1998.

    [11] J. Broch, D. A. Maltz, D. B. Johnson, Y.C. Hu, and J. Jetcheva, “A performance comparison of multi-hop wireless ad hoc network routing protocols,” In Proc. of the 4th annual ACM/IEEE international conference on Mobile computing and networking, pp.85-97, 1998.

    [12] ns-2: network simulator. http://www.isi.eduinsnam/ns/

    [13] http://trace.eas.asu.edu/yuv/index.html

    [14] J. Chakareski, S. Han, and B. Girod, “Layered coding vs. multiple descriptions for video streaming over multiple paths,” In Proc. of the 11th ACM international conference on Multimedia, pp. 422-431, Berkeley, CA, Nov. 2003.

    [15] X. Li and L. Cuthbert, “Stable Node-Disjoint Multipath Routing with Low Overhead in Mobile Ad Hoc Networks,” In Proc. of the IEEE MASCOTS, 4-8 Oct. 2004.

    [16] Z. Ye, S. V. Krishnamurthy and S.K. Tripathi, “A Framework for Reliable Routing in Mobile Ad Hoc Networks,” IEEE INFOCOM, Vol. 1, 30 March-3 April, 2003.

    [17] Linifang Zhang, Zenghua Zhao, Yantai Shu, Lei Wang, Yang and O.W.W., ”Load balancing of multipath source routing in ad hoc networks,” IEEE ICC, Vol. 5, pp. 3197-3201, 28 April-2 May 2002.

    [18] N. Gogate, D. Chung, S. S. Panwar, and Y. Wang, “Supporting image and video applications in a multihop radio environment using path diversity and multiple description coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 9, pp. 777–792, Sep. 2002.

    [19] S. Mao, S. Lin, S. S. Panwar, Y. Wang, and E. Celebi, “Video transport over ad hoc networks: Multistream coding with multipath transport,” IEEE JSAC, vol. 21, no. 10, pp. 1721–1737, Dec. 2003.

    [20] J. Apxtolopulos and S. Wee, “Unbalanced multiple description video communication using path diversity,” In Proc. IEEE ICIP, pp. 966-969, Thessaloniki, Greece, Oct. 2001.

    [21] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On multiple description streaming with content delivery networks,” In Proc. IEEE INFOCOM, pp. 1736-1745, New York, June 2002.

    下載圖示 校內:立即公開
    校外:2006-09-06公開
    QR CODE