簡易檢索 / 詳目顯示

研究生: 王智弘
Wang, Jhih-Hong
論文名稱: 多重圓孔型鋼梁結構設計與受火行為研究
Fire behavior and structural design of cellular steel beam
指導教授: 賴啟銘
Lia, Chi-Ming
共同指導教授: 張惠雲
Chang, Heui-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 167
中文關鍵詞: 有限元素分析蜂窩梁減碳鋼結構梁腹開孔高溫行為
外文關鍵詞: Cellular Beams, FEA, Load Capacity, Failure Mode, Fire Behavior
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化日益嚴重,各國都努力設法降低碳排放量,以減緩全球暖化的速度,而歐洲與美國甚至開始徵收碳稅。聯合國氣候變化大會指出,建築產業的碳排放量高達37%,其中又以建材生產階段產生的碳排最多。因此,本研究針對腹板開孔鋼梁進行設計分析研究,以期減少整體用鋼量。具體而言,本研究首先根據文獻彙整出一套腹板多重圓形開孔鋼梁之結構設計與檢核流程,再搭配有限元素分析與文獻實驗進行驗證,之後考慮不同開孔數量與尺寸的鋼梁,以建築中的小梁與大梁為設計目標,對用途為倉庫的載重進行檢核,最後分析大梁常溫可受的極限載重。由於鋼結構在火場中的強度會急遽下降,因此針對上述各種案例以有限元素分析進行定溫加載與定載加溫測試並加上防火漆,探討不同案例在火場中的破壞模式與有無防火漆的差異。結果顯示,撓度的理論公式僅限於彈性分析,當鋼梁進入非線性段,以有限元素分析較為準確。對於腹板開孔鋼梁的撓度檢核,建議理論公式用的斷面積與面積二次矩可依照開孔數進行修正,並考慮剪切變形之影響。鋼梁之破壞位置主要隨載重形式與開孔方式而不同,但不受環境溫度所影響。針對腹板開孔鋼梁,集中載重作用下鋼梁最大承載能力應以開孔間腹板挫屈與否決定,而非規範規定的最大撓度所控制。另外,開孔與否對大梁耐火時間影響有限,但其破壞模式會由支承破壞變成開孔間腹板挫屈 (WPB) 破壞。應力比高的小梁耐火時間較短,故火災時主要由大梁維持結構穩定。無論腹板開孔與否,防火漆均能延長鋼梁達到臨界溫度的時間,且皆能到達規範要求之最長防火時效3小時。

    Based on the results of literature review, this study first proposed a design procedure for steel beams with multiple circular web-openings. The study then validated the design procedure by finite element analysis (FEA) and compared the simulated results with test data. The load capacity was also analyzed for steel beams with different numbers and sizes of circular web-openings and at normal temperature. Furthermore, case study analyses were made to study the load capacity and failure modes of the girders and beams at different heating temperate and the changes in fire resistance without and with fireproof paint.
    The results show that the failure modes of the steel girders and beams may vary with the loading conditions and web-opening configuration, and can hardly change with the heating temperature. Under a concentrated load, the load capacity of the girders should be determined by the web buckling between the openings (WPB), rather than being controlled by the maximum deflection specified by the fire-protection design standard. Moreover, web openings may have a limited impact on the fire-resistance, but can change the failure mode from the stress concentration at the supports to the WPB. Fireproof paint can increase the time to reach the critical temperature, and may cause the steel girders and beams to have the maximum 3-hour fire-resistance, as required by the standards.

    致謝 I 摘要 II 目錄 VIII 表目錄 XI 圖目錄 XIV 符號表 XXI 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究內容 2 1.3 研究方法 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 腹板開孔鋼梁介紹 5 2.2 蜂窩梁設計與檢核 6 2.3 NPI-240均佈載重計算範例 7 2.4 鋼材高溫性質 11 2.4.1 相關文獻回顧 11 2.4.2 相關耐火參數與規範 13 2.5 防火漆行為 15 第三章 有限元素模型建置與驗證 32 3.1 ANSYS有限元素分析軟體介紹 32 3.1.1 靜力分析 32 3.1.2 熱傳分析 32 3.2 案例模型 33 3.2.1 模型建置 33 3.2.2 材料參數 33 3.2.3 元素與網格劃分 34 3.2.4 接觸設定 35 3.2.5 邊界條件與外力加載 35 3.3 模型驗證 35 3.3.1 判斷準則 35 3.3.2 集中載重 36 3.3.3 均佈載重 37 3.4 簡支梁理論與模型對比 37 3.5 結果與討論 38 第四章 腹板開孔鋼梁受力行為分析 50 4.1 前言 50 4.2 小梁梁腹兩個圓形開孔均佈載重檢核 50 4.3 大梁梁腹四個圓形開孔均佈載重檢核 52 4.4 ANSYS模型設定 54 4.1.1 小梁均佈載重 54 4.1.2 大梁集中載重與均佈載重 55 4.5 ANSYS模擬結果 56 4.5.1 小梁均佈載重 56 4.5.2 大梁均佈載重與集中載重 56 4.5.3 大梁極限載重模擬 56 4.6 減碳效果計算 57 4.7 結果與討論 58 第五章 腹板開孔鋼梁受火行為模擬 79 5.1 前言 79 5.2 有限元素分析方法介紹 79 5.2.1 模型基本參數 79 5.2.2 CASE 4網格劃分與評估 79 5.3 定溫加載分析 80 5.3.1 CASE 4 模型設定 80 5.3.2 CASE 4邊界條件 81 5.3.3 CSAE 4分析結果 81 5.4 定載加溫分析 82 5.4.1 直接受火行為 82 5.4.2 塗佈防火漆之受火行為 84 5.5 小結 86 5.5.1 定溫加載分析 86 5.5.2 定載加溫分析 87 第六章 結論與建議 121 6.1 結論 121 6.2 建議 122 附錄 124 A. NPI-240 集中載重檢核範例 124 B. NPI-240 兩個開孔均佈載重模擬 129 參考文獻 134

    [ 1 ] Fares , S. S., Coulson, john , & Dinehart, D. W. (2016). Castellated and Cellular Beam Design. https://www.academia.edu/40465200/31_Steel_Design_Guide_Castellated_and_Cellular_Beam_Design
    [ 2 ] Hieua, N. T. (2018). SIMPLIFIED DESIGN METHOD AND PARAMETRIC STUDY OF COMPOSITE CELLULAR BEAM. Journal of Science and Technology in Civil Engineering. https://doi.org/10.31814/stce.nuce2018-12(3)-04
    [ 3 ] D, P. P., M, G. L., & V, D. N. (2014). Analysis and Design of Cellular Beam and Its Verification. IERI Procedia, 7, 120–127. https://www.sciencedirect.com/science/article/pii/S2212667814000380
    [ 4 ] Ferreira, F. P. vendramell, Nardin, S. D., & Martins, C. H. (2020). Advances in Composite Beams with Web Openings and Composite Cellular Beams. Journal of Constructional Steel Research. https://doi.org/10.1016/j.jcsr.2020.106182
    [ 5 ] 內政部消防署. 全國火災統計分析https://www.nfa.gov.tw/cht/index.php?code=list&ids=220
    [ 6 ] ECMWF. Copernicus Climate Change Service. https://climate.copernicus.eu/july-2023-global-air-and-ocean-temperatures-reach-new-record-highs
    [ 7 ] United nations environment programme global alliance for buildings and construction. (2024). Global Status Report for Buildings and Construction - Beyond Foundations: Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector. 81. https://wedocs.unep.org/handle/20.500.11822/45095
    [ 8 ] Chung, K. F., Liu, C. H., & Ko, A. C. h. (2003). Steel Beams with Large Web Openings of Various Shapes and Sizes: An Empirical Design Method Using a Generalised Moment-Shear Interaction Curve. Journal of Constructional Steel Research, 59. https://www.sciencedirect.com/science/article/pii/S0143974X03000294
    [ 9 ] Elsawaf, S. A., & Hassan, M. M. (2018). Behaviour of Structural Sub-Assemblies of Steel Beams with Openings in Fire Conditions. Journal of Constructional Steel Research, 148, 627–638. https://www.academia.edu/80559735/Behaviour_of_structural_sub_assemblies_of_steel_beams_with_openings_in_fire_conditions
    [ 10 ] Elsawaf, S. (2017). v OF STRUCTURAL SUBASSEMBLIES OF STEEL BEAMS WITH OPENINGS. Al-Azhar University Civil Engineering Research Magazine, 39(2). https://azharcermjournal.com/CERMF1704/P17-04-17.pdf
    [ 11 ] Grilo, L. F., Fakury, R. H., Silva, A. L. reis de castro e, & Veríssimo, G. de souza. (2018). Design Procedure for the Web-Post Buckling of Steel Cellular Beams.Journal of Constructional Steel Research, 148, 525–541. https://www.sciencedirect.com/science/article/pii/S0143974X18303250
    [ 12 ] Chung, K. F., Liu, T. C. h., & Ko, A. C. h. (2001). Investigation on Vierendeel Mechanism in Steel Beams with Circular Web Openings. Journal of Constructional Steel Research, 57, 467–490. https://www.sciencedirect.com/science/article/pii/S0143974X00000353
    [ 13 ] Sayed, A. m. (2022). Numerical Study of the Effects of Web Openings on the Load Capacity of Steel Beams with Corrugated Webs. Journal of Constructional Steel Research, 196. https://www.sciencedirect.com/science/article/pii/S0143974X22002905
    [ 14 ] Liu, Y., Nishiyama, M., Tani, M., Kurata, M., & Iwata, K. (2021). Steel Beam with Web Opening Reinforced by Induction Heating. Journal of Constructional Steel Research, 176. https://www.x-mol.com/paper/1315811708806336512
    [ 15 ] Ward, J. (1999). SCI P100 design of composite and non-composite cellular beams. The Steel Construction Institute, UK.
    [ 16 ] Lawson, R. M. and Hicks, S. J. (2011). SCI P355 design of composite beams with large web openings. The Steel Construction Institute, UK.
    [ 17 ] Erdal, F., & Saka, M. P. (2013). Ultimate Load Carrying Capacity of Optimally Designed Steel Cellular Beams. Journal of Constructional Steel Research, 80, 355–368. https://www.sciencedirect.com/science/article/pii/S0143974X12002374
    [ 18 ] Cao, Y., Jiang, J., Lu, Y., Chen, W., & Ye, J. (2023). Progressive Collapse of Steel Structures Exposed to Fire: A Critical Review. Journal of Constructional Steel Research, 207. https://www.sciencedirect.com/science/article/pii/S0143974X23002122
    [ 19 ] Oribi, S. B., Kada, A., lamri, belkacem, & Mesquita, L. (2023). Behaviour of Cellular Steel Beams at Ambient and High-Temperature Conditions. Journal of Constructional Steel Research, 207. https://www.sciencedirect.com/science/article/pii/S0143974X23001967
    [ 20 ] Najafi, M., & Wang, Y. C. (2017). Axially Restrained Steel Beams with Web Openings at Elevated Temperatures, Part 1: Behaviour and Numerical Simulation Results. Journal of Constructional Steel Research, 128, 745–761. https://www.researchgate.net/publication/309184972_Axially_restrained_steel_beams_with_web_openings_at_elevated_temperatures_part_2_Development_of_an_analytical_method
    [ 21 ] Bihina, G., Zhao, B., & Bouchaïr, A. (2013). Behaviour of Composite Steel–Concrete Cellular Beams in Fire. Engineering Structures, 56, 2217–2228. https://www.researchgate.net/publication/277607647_Behaviour_of_composite_steel-concrete_cellular_beams_in_fire
    [ 22 ] zhu, E., Lyu, J., Zhu, J., qi, Y., Li, R., Sun, B., & Wang, Z. (2023). Fire Resistance of Steel-Concrete Cellular Composite Beams Having Different End Restraints. Journal of Constructional Steel Research, 206. https://doi.org/https://www.researchgate.net/publication/371974082_Fire_resistance_of_steel-concrete_cellular_composite_beams_having_different_end_restraints
    [ 23 ] 賴品蓁. (2023). 塗佈水性防火漆之鋼梁柱接頭防火安全研究. 國立成功大學土木工程學系碩士論文. https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi/ccd=I.5JIc/record?r1=4&h1=1
    [ 24 ] Eurocode3. (2005). Design of Steel Structure-Part1-2:General Rules-Structural Fire Design. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.2.2005.pdf
    [ 25 ] 經濟部標準試驗局. (2014). CNS 12514-1 建築物構造構件耐火試驗法第一部:一般要求事項.
    [ 26 ] 內政部國土管理署. (2010). 鋼結構極限設計法規範及解說.
    [ 27 ] SCI. (2011). Design of Composite Beams With Large Web Openings.
    [ 28 ] FEMA. (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. https://www.nehrp.gov/pdf/fema350.pdf
    [ 29 ] Lucherini, A., & Maluk, C. (2019). Intumescent Coatings Used for the Fire-Safe Design of Steel Structures: A. Journal of Constructional Steel Research, 162(105712). https://www.researchgate.net/publication/334961029_Intumescent_coatings_used_for_the_fire-safe_design_of_steel_structures_A_review
    [ 30 ] Zakwan, F. A. a, Krishnamoorthy, R. R., Ibrahim, A., & Ismail, R. (2020). Finite Element Analysis of Coated (Intumescent Coating Protection) Cellular Steel Beam (CSB) Expose to Fire. Materials Science and Engineering, 713. https://doi.org/10.1088/1757-899X/713/1/012032
    [ 31 ] Wang, P., Wang, X., Liu, M., & Zhang, L. (2016). Web-Post buckling of fully and partially protected cellular Steel beams at elevated temperatures in a Fire. Thin-Walled Structures, 98, 29–38. https://www.researchgate.net/publication/276859666_Web-post_buckling_of_fully_and_partially_protected_cellular_steel_beams_at_elevated_temperatures_in_a_fire
    [ 32 ]內政部營建署. 建築技術規則建築設計施工篇. https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=D0070115&flno=69
    [ 33 ] ASFP, Fire Protection for structural steel in buildings 5th Edition
    [ 34 ] Lamri, B., Mesquita, L., Abdelhak, K., & piloto, P. (2016). Behavior of Cellular Beams Protected with Intumescent Coatings. Fire Research 2017, 1. https://doi.org/10.4081/fire.2017.27
    [ 35 ] ANSYS. https://www.ansys.com/content/dam/amp/2022/july/quick-request/2022-ansys-taiwan-brochure.pdf
    [ 36 ] 楊天翔. (2007). 梁柱鋼結構加溫冷卻影響之數值模擬. 國立成功大學航太工程學系碩士論文. https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=8BDlGG/record?r1=1&h1=0
    [ 37 ] Liu, X., Lin, P., & He, Z. (2019). Calculation of Deflection of Box Girder with Corrugated Steel Webs Considering Shear Deformation Effect of Whole Section. Journal of Highwat and Transportation Research and Development, 36(1). https://doi.org/10.3969/j.issen.1002-0268.2019.01.009
    [ 38 ] 陳正誠, 陳正平, 林庚達, 梁宇宸, 劉宏俊, 林永斌, 李心弘, & 李啟瑞. (2003). 鋼結構設計手冊. 中民國結構工程學會. https://www.scribd.com/document/463874194/Steel-Structure-Handbook-pdf
    [ 39 ] 內政部營建署. (2023). 建築技術規則建築構造編. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070116
    [ 40 ] Pomponi, F., & Moncaster, A. (2018). Scrutinising Embodied Carbon in Buildings: The next Performance Gap Made Manifest. Renewable and Sustainable Energy Reviews, 81, 2431–2442. https://www.sciencedirect.com/science/article/pii/S136403211730998X
    [ 41 ] 馬湘甯. (2023). 結構系統與結構材料對鋼構建築碳排之影響. 國立成功大學土木工程學系碩士論文. https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi/ccd=I.5JIc/record?r1=1&h1=0
    [ 42 ] Martins, C. H., Ferreira, F. P. vendramell, Rossi, A., & Trentini, E. V. wolf. (2017). Numerical Analysis of Physical and Geometrical Imperfections in Cellular Beams. Open Journal of Civil Engineering, 116–129. http://www.scirp.org/journal/ojce
    [ 43 ] Durif, S., Bouchaïr, A. H., & Vassart, O. (2013). Validation of an Analytical Model for Curved and Tapered Cellular Beams at Normal and Fire Conditions. Periodica Polytechnica Civil Engineering, 57(1), 83–95. https://www.researchgate.net/publication/277688931
    [ 44 ] 陳柏端. (2021). 高溫下混凝土構件之熱傳數值分析報告. 內政部建築研究所自行研究報告. https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=261052
    [ 45 ] Jia , L., Li , Q., & Liu , Y. (2012). PERFORMANCE ANALYSIS AND CALCULATION OF SHEAR FORCE RESISTANCE FOR CELLULAR BEAM. ENGINEERING MECHANICS, 29. https://doi.org/10.6052/j.issn.1000-4750.2012.06.ST04
    [ 46 ] 邵明强, 胡志海, & 阮祥炬. (2007). 圆孔蜂窝钢梁非线性屈曲有限元分析. 山西建築, 33(8). https://doi.org/0.13719/j.cnki.cn14—1279/tu.2007.08.055
    [ 47 ] 黄泰杰, 王维川, & 黄炳生炳生. (2019). 蜂窝梁极限承载力及弯–剪相互作用研究. 土木工程與管理學報, 36(5). https://ncku.primo.exlibrisgroup.com/discovery/fulldisplay?docid=cdi_wanfang_journals_whcsjsxyxb201905032&context=PC&vid=886NCKU_INST:886NCKU_INST&lang=zh-tw&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=Everything&query=any,contains,%E5%9C%93%E5%BD%A2%E8%9C%82%E7%AA%A9%E6%A2%81&offset=0
    [ 48 ] Lang, T., & Zhao, D. (2005). The Analyses of Behaviors of Honeycombed Girder. JOURNAL OF ZHEJIANG UNIVERSITY OFTECHNOLOGY, 33(5). https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=zjgd
    [ 49 ] Wang, X., & Wang, P. (2014). Advances on Buckling Behavior of Web-Posts in Castellated Steel Beams.Progress in Steel Building Structures, 16 (6)
    https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=jzjz
    [ 50 ] Wu, di, & Wu, yue. (2007). Mechanical Properties of Circular-Hole Castellated Beams. Journal of Architecture and Civil Engineering, 24(1). https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=xbjg
    [ 51 ] Feng , C., & Yu, D. (2012). Research on the Deflection Calculation of Castellated Beam. Sichuan Building Science, 38(1). https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=aczj
    [ 52 ] 羅烈, & 羅曉霖. (2005). 蜂窝梁设计规范的比较研究. 建筑钢结构进展, 7(2). https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=jzjz
    [ 53 ] 王平. (2006). 蜂窝梁挠度的简化计算. 四川建築科學研究, 32(3). https://oversea.cnki.net/knavi/JournalDetail?pcode=CJFD&pykm=aczj
    [ 54 ] Cirpici, burak Kaan, Orhan, suleyman Nazif, Yazici, C., & Ozkal, F. M. (2022). Numerical Investigation of the Fire Behavior of Storage Rack Systems Protected by Intumescent Coating. ASC Omega, 36001–36008. https://www.researchgate.net/publication/363926425_Numerical_Investigation_of_the_Fire_Behavior_of_Storage_Rack_Systems_Protected_
    [ 55 ] Nadjai, A., Petrou, K., han, S., & Ali, F. (2016). Performance of Unprotected and Protected Cellular Beams in Fire Conditions. Construction and Building Materials, 105, 579–588. https://www.researchgate.net/publication/289768123_Performance_of_unprotected_and_protected_cellular_beams_in_fire_conditions
    [ 56 ] Park, M. J. (2023). Effects for Web Openings of Steel Cellular Beams with Concrete Slabs under Fire. The 12th International Symposium on STEEL STRUCTURES.
    [ 57 ] Chen, H., Wang, Y., Luo, C., yang, M., Qi, A., & Wang, B. (2023). High-Strength Steel Beams with Hexagonal Web Openings under Impact Load. Journal of Constructional Steel Research, 207. https://www.sciencedirect.com/science/article/pii/S0143974X23002146
    [ 58 ] Chen, H., Wang, Y., Fu, C., Zhang, T., Luo, C., & Wang, B. (2023). Impact Behavior of High-Strength Steel Beam with Circular Web Openings. Journal of Constructional Steel Research, 211. https://www.sciencedirect.com/science/article/pii/S0143974X23003863
    [ 59 ] Jia, L., Wang, Y., Wang, L., & Zhang, X. (2018). Study on Fire Resistance of Steel Castellated Beam-Concrete Slab Composite Beams. Journal of Shenyang Jianzhu University(Natural Science), 34(5). https://www.syjzgcxyxbperiodicals.net/cnvolume/JSJU/34/05/-64abe3d8c5522.pdf
    [ 60 ] SCI Publication (2012). Eurocode.
    [ 61 ] AISC. (2010). Specification for Structural Steel Buildings.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE