簡易檢索 / 詳目顯示

研究生: 郭柏志
Kuo, Po-Chih
論文名稱: 探討潔淨氣化程序:設計、最適化及熱力學分析
Investigations of Clean Gasification Processes: Design, Optimization and Thermodynamic Analysis
指導教授: 吳煒
Wu, Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 147
中文關鍵詞: 生質能焙燒生質物氣化共氣化程序設計熱力學分析二氧化碳利用混合式發電廠
外文關鍵詞: Bioenergy, Torrefied biomass, Gasification, Co-gasification, Process design, Thermodynamic analysis, CO2 utilization, Hybrid power plant
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣化是利用熱化學程序生產高熱值之氣體,如氫氣、一氧化碳、甲烷和其他碳氫化合物。其產物氣體中,氫氣和一氧化碳又被總稱為合成氣,合成氣主要又可做為熱和電之生產或用於合成燃料與化學品。生質物可以做為氣化程序之燃料,然而,未經處理過之生質物本質上為一低熱值且易吸濕之燃料,由於生質物含水分高,因此導致燃燒效率低。
    焙燒生質物為原料生質物經焙燒程序後而生產之燃料,此程序為一種溫和裂解之熱處理程序,該程序操作於溫度範圍為200-300°C於惰性或氮氣環境下。焙燒程序可以改變原料生質物之物理與化學性質。然而,相較於利用原料生質物發展生質能,近年來以焙燒生質物發展生質能得到越來越多學者關注。因此,本論文目標為比較原料生質物和焙燒生質物於氣化程序下之效能分析,並且評估焙燒生質物於氣化程序下游端之潛在應用性。
    首先,本研究藉由Aspen Plus軟體建立下吸式固定床氣化爐,並經由熱力學分析比較三種生質物氣化效能,分別為原料刺竹、焙燒溫度為250°C之刺竹和焙燒溫度為300°C之刺竹。當量比和水蒸氣量比為氣化反應過程中之兩個重要操縱變數。氣化效能即評估冷氣體效率和碳轉化效率。分析結果指出當原料刺竹經過焙燒後有助於合成氣產率提升。由於焙燒溫度為300°C之刺竹本身熱值較其他兩燃料高,造成冷氣體效率最低。由碳轉化效率分析結果發現,原料刺竹和焙燒溫度為250°C之刺竹不管在任操作條件下,碳轉化效率皆能超過90%。從模擬預測結果可得知,當同時考慮合成氣產率、冷氣體效率和碳轉化效率下,焙燒溫度為250°C之刺竹是最合適氣化程序之燃料。
    本研究接著分析生質物與煤炭共氣化系統下能源轉化效率和可用能效率。結果發現於共氣化系統下,雖然燃料混合比為系統重要參數,但在各燃料碳邊界點下添加二氧化碳,可提升系統能源轉化效率和可用能效率。當結合熱電系統,模擬結果顯示,相較於使用混合40wt%原料木頭和60wt%煤炭之燃料,當使用混合40wt%焙燒木頭和60wt%煤炭之燃料,發電效率可提升8.43%。相較於使用100wt%之煤炭發電,當混合40wt%焙燒木頭和60wt%煤炭做為燃料,二氧化碳排放量可以降低38.22%。
    本研究最後建立一共氣化混合式二氧化碳捕捉發電廠,其結合焙燒生質物與煤炭共氣化、固態氧化燃料電池和鈣迴路二氧化碳捕捉。利用熱力學分析評估兩種混合式二氧化碳捕捉發電系統效能,分別為二氧化碳於固態氧化燃料電池前捕捉和二氧化碳於固態氧化燃料電池後捕捉。於不同的焙燒生質物混合比下,利用最適化分析找到各混合比之碳邊界點並以得到最大合成氣產率。模擬結果顯示,在能源轉換效率的觀點下,前捕捉設計優於後捕捉設計。然而,後捕捉設計相較於前捕捉設計可減少排放94.19%之二氧化碳,但需額外損耗4.17%之能源。藉由系統內部熱回收,後捕捉設計之能源損耗可降低到1.09%。整體而言,後捕捉二氧化碳設計之熱整合共氣化混合式發電廠較推薦使用。

    Gasification is a thermochemical process that is currently used to produce higher calorific value gases, such as hydrogen, carbon monoxide, carbon dioxide, methane, and other hydrocarbons. In these product gases, the hydrogen and carbon monoxide are called synthesis gas (syngas) which is widely used in heat or power generation and the synthesis of fuels and chemicals. Biomass can be used as a feedstock for gasification. However, raw biomass is generally characterized by a relatively low calorific value and hygroscopic nature, and thus a high moisture content, which causes the low combustion efficiency
    Torrefied biomass is produced by thermally pretreating the raw biomass. This process is known as torrefaction, which is a mild pyrolysis process carried out in the temperature range of 200-300°C under an inert or nitrogen atmosphere. Torrefaction enhances the physical and chemical properties of raw biomass. Compared to traditional approaches to the production of raw biomass energy, the application of torrefied biomass is attracting increasing attention in recent years. For these reasons, the aims of this thesis are to compare the gasification performance between raw and torrefied biomass and to evaluate the potential applications of torrefied biomass in downstream process.
    First of all, the gasification performances of three biomass materials, including raw bamboo, torrefied bamboo at 250 °C (TB250), and torrefied bamboo at 300 °C (TB300), in a downdraft fixed bed gasifier are evaluated through thermodynamic analysis. Two parameters of modified equivalence ratio (ERm) and steam supply ratio (SSR) are considered to account for their impacts on biomass gasification. The cold gas efficiency (CGE) and carbon conversion (CC) are adopted as the indicators to examine the gasification performances. The analyses suggest that bamboo undergoing torrefaction is conducive to increasing syngas yield. Because the higher heating value of TB300 is much higher than those of raw bamboo and TB250, the former has the lowest CGE among the three fuels. The values of CC of raw bamboo and TB250 are always larger than 90% within the investigated ranges of ERm and SSR. The predictions suggest that TB250 is a more feasible fuel for gasification after simultaneously considering syngas yield, CGE, and CC.
    A co-gasification system blending coal and biomass is then examined in terms of energy conversion efficiency (ECE) and exergy efficiency (EE). Although the percentage of raw wood (RW), torrefied wood (TW) and coal in steam co-gasification is one of the most important parameters that affect the gasification process, the addition of CO2 could effectively improve ECE and EE while the steam-to-carbon ratio (S/C) is adjusted at the carbon boundary point (CBP). A combined heat and power (CHP) system is illustrated to assess performance in terms of power generation. The results show that the total power generation by feeding the TW-based fuel blend of 40 wt% TW and 60 wt% coal is increased by 8.43%, as compared to that of the RW-based fuel blend of 40 wt% RW and 60 wt% coal. Compared with 100 wt% coal fuel, the TW-based fuel can significantly reduce CO2 specific emission by 38.23 %.
    Finally, a clean hybrid power plant using a combination of integrated torrefied biomass co-gasification (TBCG), solid oxide fuel cell (SOFC), and calcium looping (CaL) CO2 capture is developed. Based on pre-SOFC (Design I) and post-SOFC (Design II) configurations, thermodynamic analysis is adopted to examine the performance of hybrid power generation plants. The carbon boundary points (CBPs) for different torrefied biomass blending ratios (TBBRs) are found using specific optimization algorithms to maximize the syngas yield. From the viewpoint of energy utilization, the simulation results show that Design I is superior to Design II. However, the CO2 emissions of Design II are lower than those of Design I by 94.19%, although it has an accompanying energy penalty of 4.17%. Due to its use of the internal heat recovery approach, the energy penalty of Design II falls to 1.09%. As a whole, Design II with the heat integration design is recommended for use in hybrid power plants.

    Acknowledgments I 摘要 II Abstract IV Contents VII List of tables XI List of figures XII Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature review 3 1.2.1 Syngas production from natural gas reforming 3 1.2.2 Syngas production from biomass gasification 5 1.2.3 Syngas production from co-gasification 6 1.2.4 Biomass torrefaction 7 1.2.5 Torrefied biomass gasification 9 1.3 Motivation and objectives 11 Chapter 2. Methodology 14 2.1 Types of gasifiers 14 2.2 Model development 15 2.2.1. Assumptions 15 2.2.2. Gasification model 15 2.2.3. Mass and energy balances 17 2.2.4. Stream and thermodynamic properties 18 2.3. System description 20 2.4. Model validation 25 2.5. System operating parameters 29 2.6. Results and discussion 31 2.6.1. Effect of ERm 31 2.6.2. Cold gas efficiency and carbon conversion 37 2.6.3. Effect of steam 41 Chapter 3. Co-gasification with CO2 utilization 49 3.1. Co-gasification 49 3.2. CO2 utilization 49 3.3. Description of the process 51 3.3.1. Co-gasification system 54 3.3.2. Power generation system 57 3.4. Process parameters 60 3.5. Energy analysis 60 3.6. Exergy analysis 61 3.7. Results and discussion 65 3.7.1 Gasification characteristics and optimization 65 3.7.2. Gasification with CO2 utilization and optimization 75 3.7.3. Co-gasification characteristics and optimization 80 3.7.4. Power generation 83 3.7.5. Co-gasification with CO2 utilization and optimization 85 3.7.6. Net system efficiency and CO2 emissions 87 3.7.7. Heat integration and optimization 89 Chapter 4. Hybrid power plant with CO2 capture 91 4.1 Hybrid power system 91 4.2 Calcium looping CO2 capture 92 4.3 Process design and simulation 93 4.3.1 Torrefied biomass co-gasification system 95 4.3.2 Solid oxide fuel cell system 98 4.3.3 Calcium looping CO2 capture and sequestration system 101 4.3.4. Model Validation 103 4.3.5. Feedstock and system parameters 105 4.3.6. Energy efficiency analysis 107 4.4 Results and discussion 108 4.4.1 Performance of TBCG system 108 4.4.2 Optimization 113 4.4.3 Characteristics of the CaL CO2 capture process 116 4.4.4 Comparison of the hybrid power generation systems’ performance 121 4.4.5 Hybrid system integration 125 Chapter 5. Conclusions and suggestions 128 5.1. Air/steam biomass gasification 128 5.2. Steam co-gasification with CO2 utilization 129 5.3. Hybrid power plant 129 5.4. Suggestions 130 References 131 List of publications 144

    Abdollahi M, Yu J, Hwang HT, Liu PKT, Ciora R, Sahimi M, Tsotsis TT. Process intensification in hydrogen production from biomass-derived syngas. Ind Eng Chem Res 2010;49:10986-93.
    Aigner I, Pfeifer C, Hofbauer H. Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel 2011;90:2404-12.
    Asadullah M, Adi AG, Suhada N, Malek NH, Saringat MI, Azdarpour A. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers Manage 2014;88:1086-93.
    Asif M, Bak CU, Saleem MW, Kim WS. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture. Fuel 2015;160:513-24.
    Atsonios K, Grammelis P, Antiohos SK, Nikolopoulos N, Kakaras E. Integration of calcium looping technology in existing cement plant for CO2 capture: Process modeling and technical considerations. Fuel 2015;153:210-23.
    Bang-Møller C, Rokni M, Elmegaard B, Ahrenfeldt J, Henriksen UB. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells. Energy 2013;58:527-37.
    Baratieri M, Baggio P, Fiori L, Grigiante M. Biomass as an energy source: Thermodynamic constraints on the performance of the conversion process. Bioresource Technol 2008;99:7063-73.
    Bates RB, Ghoniem AF. Biomass torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresource Technol 2012;124:460-9.
    Berrueco C, Recari J, Matas Güell B, del Alamo C. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed. Energy 2014;70:68-78.
    Berstad D, Anantharaman R, Jordal K. Post-combustion CO2 capture from a natural gas combined cycle by CaO/CaCO3 looping. Int J Greenh Gas Con 2012;11:25-33.
    Bi XT, Liu X. High density and high solids flux CFB risers for steam gasification of solids fuels. Fuel Process Technol 2010;91:915-20.
    Buragohain B, Mahanta P, Moholkar VS. Biomass gasification for decentralized power generation: The Indian perspective. Renew Sust Energ Rev 2010;14:73-92.
    Butterman HC, Castaldi MJ. Influence of CO2 injection on biomass gasification. Ind Eng Chem Res 2007;46:8875-86.
    Castaldi MJ, Dooher JP. Investigation into a catalytically controlled reaction gasifier (CCRG) for coal to hydrogen. Int J Hydrogen Energ 2007;32:4170-9.
    Chen HT, Wu W. Efficiency enhancement of pressurized oxy-coal power plant with heat integration. Int J Energy Res 2014;39:256-64.
    Chen WH, Du SW, Tsai CH, Wang ZY. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. Bioresource Technol 2012;111:433-8.
    Campoy M, Gómez-Barea A, Vidal FB, Ollero P. Air-steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Process Technol 2009;90:677-85.
    Chen WH, Lin MR, Jiang TL, Chen MH. Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. Int J Hydrogen Energ 2008;33:6644-56.
    Chen WH, Kuo PC. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010;35:2580-86.
    Chen WH, Kuo PC. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011a;36:803–11.
    Chen WH, Kuo PC. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011b;36:6451-60.
    Chen Q, Zhou JS, Liu BJ, Mei QF, Luo ZY. Influence of torrefaction pretreatment on biomass gasification technology. Chinese Sci. Bull. 2011;56:1449–56.
    Chew JJ, Doshi V. Recent advances in biomass pretreatment-Torrefaction fundamentals and Technology. Renew Sustain Energy Rev 2011;15:4212–22.
    Chen X, Zheng D, Guo J, Liu J, Ji P. Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil. Energy 2013;52:279-88.
    Clausen LR, Elmegaard B, Houbak N. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy 2010;35: 4831-42.
    Cormos CC. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. Energy 2014;78:665-73.
    Couhert C, Salvador S, Commandre JM. Impact of torrefaction on syngas production from wood. Fuel 2009;88:2286-90.
    Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH. Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 2009;86:331-7.
    Doherty W, Reynolds A, Kennedy D. The effect of air preheating in a biomass CFB gasifier using Aspen Plus simulation. Biomass Bioenerg 2009;33:1158-67.
    Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy 2010;35:4545-55.
    Dudyński M, van Dyk JC, Kwiatkowski K, Sosnowska M. Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process Technol 2015;131:203-12.
    El-Emam RS, Dincer I. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. Int J Hydrogen Energy 2015;40: 7694-706.
    Emun F, Gadalla M, Majozi T, Boer D. Integrated gasification combined cycle (IGCC) process simulation and optimization. Comput Chem Eng 2010;34:331-8.
    Fan MS, Abdullah AZ, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over NieCo/MgOeZrO2: preparation, characterization and activity studies. Appl Catal B 2010;100:365-77.
    Gai C, Dong Y. Experimental study on non-woody biomass gasification in a downdraft gasifier. Int J Hydrogen Energ 2012;37:4935-44.
    García G, Arauzo J, Gonzalo A, Sánchez JL, Ábrego J. Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chem Eng J 2013;222:345-52.
    Giuffrida A, Romano MC, Lozza G. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Energy 2013;53:221-29.
    Gonzáleza JF, Romána S, Bragadoa D, Calderónb M. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Process Technol 2008;89:764-72.
    Goransson K, Soderlind U, He J, Zhang W. Review of syngas production via biomass DFBGs. Renew Sust Energy Rev 2011;15:482-92.
    Gordillo G, Annamalai K, Carlin N. Adiabatic fixed-bed gasification of coal, dairy biomass, and feedlot biomass using an air-steam mixture as an oxidizing agent. Renew Energ 2009;34:2789-97.
    Halmann M, Steinfeld A. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases by tri-reforming of flue gases from coal and gas-fired power stations, and by the carbothermic reduction of iron oxide. Energy 2006;31:3171-85.
    Howaniec N, Smolinski A. Steam co-gasification of coal and biomass-Synergy in reactivity of fuel blends chars. Int J Hydrogen Energ 2013;38:16152-60.
    Jarungthammachote S, Dutta A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energ Convers Manage 2008;49:1345-56.
    Jayah TH, Aye L, Fuller RJ, Stewart DF. Computer simulation of a downdraft wood gasifier for tea drying Biomass Bioenerg 2003;25:459-69.
    Jayaraman K, Gokalp I. Effect of char generation method on steam, CO2 and blended mixture gasification of high ash Turkish coals. Fuel 2015;153:320-7.
    Jia J, Abudula A, Wei L, Sun B, Shi Y. Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system. Renew Energ 2015;81:400-10.
    Kaliyan N, Morey RV, Tiffany DG, Lee WF. Life cycle assessment of a corn stover torrefaction plant integrated with a corn ethanol plant and a coal fired power plant. Biomass Bioenerg 2014;63:92-100.
    Kannan P, Shoaibi AA, Srinivasakannan C. Energy recovery from co-gasification of waste polyethylene and polyethylene terephthalate blends. Comput Fluids 2013;88:38-42.
    Kaska O. Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry. Energ Convers Manage 2014;77:108-17.
    Klimantos P, Koukouzas N, Katsiadakis A, Kakaras E. Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment. Energy 2009;34:708-14.
    Koukkari P, Pajarre R. Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation. Comput Chem Eng 2006;30:1189-96.
    Kuo PC, Wu W. Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal. Chem Eng Sci 2016;142:201-14.
    Kuo PC, Wu W, Chen WH. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 2014;117:1231-41.
    Lee JC, Lee HH, Joo YJ, Lee CH, Oh M. Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier. Energy 2014;64:58-68.
    Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energ 2012;93:680-5.
    Li J, Zhang X, Pawlak-Kruczek H, Yang W, Kruczek P, Blasiak W. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant. Energy Convers Manage 2014;84:503-11.
    Li X, Grace JR, Watkinson AP, Lim CJ, Ergudenler A. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001;80:195-207.
    Lisbona P, Romeo LM. Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT. Int J Hydrogen Energy 2008;33:5755-64.
    Lv P, Yuan Z, Ma L, Wu C, Chen Y, Zhu J. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew Energ 2007;32:2173-85.
    Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technol 2004;95:95-101.
    Lyubovsky M, Roychoudhury S, LaPierre R. Catalytic partial “oxidation of methane to syngas” at elevated pressures. Catal Lett 2005;99:113-17.
    Mahishi MR, Goswami DY. Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energ 2007;32:3831-40.
    Mani S, Tabil LG, Sokhansanj S. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenerg 2004;27:339-52.
    Ndibe C, Grathwohl S, Paneru M, Maier J, Scheffknecht G. Emissions reduction and deposits characteristics during cofiring of high shares of torrefied biomass in a 500 kW pulverized coal furnace. Fuel 2015;156:177-89.
    Navalho JEP, Frenzel I, Loukou A, Pereira JMC, Trimis D, Pereira JCF. Catalytic partial oxidation of methane rich mixtures in non-adiabatic monolith reactors. Int J Hydrogen Energ 2013;38: 6989-7006.
    Nikoo MB, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenerg 2008;32:1245-54.
    Nikoo MK, Amin NAS. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 2011;92678-91.
    Nipattummakul N, Ahmed I, Kerdsuwan S, Gupta AK. High temperature steam gasification of wastewater sludge. Appl Energ 2010;87:3729-34.
    Oki Y, Inumaru J, Hara S, Kobayashi M. Development of oxy-fuel IGCC system with CO2 recirculation for CO2 capture. Energy Procedia 2011;4:1066-73.
    Olsbye U, Wurzel T, Mleczko L. Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst. Ind Eng Chem Res1997;36:5180-88.
    Oyama ST, Hacarlioglu P, Gu Y, Lee D. Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hydrogen Energ 2012;37: 10444-50.
    Park SW, Jang CH, Baek KR, Yang JK. Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products. Energy 2012;45:676-85.
    Peng J, Bi XT, Li H, Lim J, Sokhansanj S. Development of Torrefaction Kinetics for British Columbia Softwoods. Int J Chem React Eng 2012;10:A15.
    Peng L, Wang Y, Lei Z, Cheng G. Co-gasification of wet sewage sludge and forestry waste in situ steam agent. Bioresour Technol 2012;114:698-702.
    Peng XD. Analysis of the thermal efficiency limit of the steam methane reforming process. Ind Eng Chem Res 2012;51:16385-92.
    Pentananunt R, Rahman ANMM, Bhattacharya SC. Upgrading of biomass by means of torrfaction. Energy 1990;15:1175-9.
    Pinto F, Andre RN, Franco C, Lopes H, Gulyurtlu I, Cabrita I. Co-gasification of coal and wastes in a pilot-scale installation 1: Effect of catalysts in syngas treatment to achieve tar abatement. Fuel 2009;88:2392-402.
    Posada A, Manousiouthakis V. Heat and power integration of methane reforming based hydrogen production. Ind Eng Chem Res 2005;44:9113-19.
    Prins MJ, Ptasinski KJ, Janssen FJJG. Thermodynamics of gas-char reactions: first and second law analysis. Chem Eng Sci 2003;58:1003-11.
    Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy 2006;31:3458-70.
    Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 2011;102:1246-53.
    Prabowo B, Umeki K, Yan M, Nakamura MR, Castaldi MJ, Yoshikawa K. CO2-steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction. Appl Energ 2014;113:670-9.
    Prabu V. Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion. Appl Energ 2015;140:1-13.
    Puig-Arnavat M, Bruno JC, Alberto C. Review and analysis of biomass gasification models. Renew Sust Energ Rev 2010;14:2841-51.
    Quiroga MMB, Luna AEC. Kinetic analysis of rate data for dry reforming of methane. Ind Eng Chem Res 2007;46:5265-70.
    Repellin V, Govin A, Rolland M, Guyonnet R. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenerg 2010;35:2580-6.
    Ramzan N, Ashraf A, Naveed S, Malik A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenerg 2011;35:3962-69.
    Renganathana T, Yadava MV, Pushpavanama S, Voolapallib RK, Choc YS. CO2 utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis. Chem Eng Sci 2012;83:159-70.
    Rokni M. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine. Energy 2014;76:19-31.
    Rousset P, Aguiar C, Labbe N, Commandre JM. Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 2011;102:8225-31.
    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrol 2012;96:86-91.
    Sadhukhan J, Zhao Y, Shah N, Brandon NP. Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems. Chem Eng Sci 2010;65:1942-54.
    Sarvaramini A, Assima GP, Larachi F. Dry torrefaction of biomass-Torrefied products and torrefaction kinetics using the distributed activation energy model. Chem Eng J 2013;229:498-507.
    Saw WL, Pang S. Co-gasification of blended lignite and wood pellets in a 100 kW dualfluidised bed steam gasifier: The influence of lignite ratio on producer gas composition and tar content. Fuel 2013;112:117-24.
    Sarkar M, Kumar A, Tumuluru JS, Patil KN, Bellmer DD. Gasification performance of switchgrass pretreated with torrefaction and densification. Appl Energ 2014;127:194-201.
    Sermyagina E, Saari J, Zakeri B, Kaikko J, Vakkilainen E. Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant. Appl Energ 2015;149:24-34.
    Shen L, Gao Y, Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenerg 2008;32:120-7.
    Sheth PN, Babu BV. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technol 2009;100:3127-33.
    Smith JM, Van Ness HC, Abbott MM. Introduction to Chemical Engineering Thermodynamics. 7th ed. New York: McGraw-Hill; 2005.
    Song C, Pan W. Tri-reforming of methane: a novel concept for synthesis of industrially useful synthesis gas with desired H2/CO ratios using CO2 in flue gas of power plants without CO2 separation. Chem Soc Div Fuel Chem 2004;49:128-31.
    Song G, Chen L, Xiao J, Shen L. Exergy evaluation of biomass steam gasification via interconnected fluidized beds. Int J Energy Res 2013;37:1743-51.
    Song Y, Liu H, Liu S, He D. Partial oxidation of methane to syngas over Ni/Al2O3 catalysts prepared by a modified sol-gel method. Energ Fuel 2009;23:1925-30.
    Sorgenfrei M, Tsatsaronis G. Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion. Appl Energ 2014;113:1958-64.
    Speidel M, Worner GKA. A new process concept for highly efficient conversion of sewage sludge by combined fermentation and gasification and power generation in a hybrid system consisting of a SOFC and a gas turbine. Energ Convers Manage 2015;98:259-67.
    Starfelt F, Aparicio ET, Li H, Dotzauer E. Integration of torrefaction in CHP plants-A case study. Energy Convers Manage 2015;90:427-35.
    Sucipta M, Kimijima S, Suzuki K. Performance analysis of the SOFC-MGT hybrid system with gasified biomass fuel. J Power Sources 2007;174:124-35.
    Supat K, Chavadej S, Lobban LL, Mallinson RG. Combined steam reforming and partial oxidation of methane to synthesis gas under electrical discharge. Ind Eng Chem Res 2003;42:16545-61.
    Taba, LE, Irfan MF, Daud WAMW, Chakrabarti MH. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew Sust Energy Rev 2012;16:5584-96.
    Taba LE, Irfan MF, Daud WMAW, Chakrabarti MH. Fuel blending effects on the co-gasification of coal and biomass-A review. Biomass Bioenerg 2013;57:249-63.
    Taufiq BN, Kikuchi Y, Ishimoto T, Honda K, Koyama M. Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation. Appl Energ 2015;147:486-99.
    Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 2002;23:129-52.
    Thanapal SS, Chen W, Annamalai K, Carlin N, Ansley RJ, Ranjan D. Carbon dioxide torrefaction of woody biomass. Energy Fuels 2014;28:1147-57.
    Trop P, Anicic B, Goricanec D. Production of methanol from a mixture of torrefied biomass and coal. Energy 2014;77:125-32.
    Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel 2013;103:156-60.
    Valero A, Uson S. Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant. Energy 2006;31:1643-55.
    van der Stelet MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenerg 2011;35:3748-62.
    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, Sokhansanj S. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets Bioresour Technol 2013;127:318-25.
    Weiland F, Nordwaeger M, Olofsson I, Wiinikka H, Nordin A. Entrained flow gasification of torrefied wood residues. Fuel Process Technol 2014;125:51-8.
    Woolcock PJ, Brown RC. A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg 2013;52:54-84.
    Wu W, Liou YC, Yang HT. Design and evaluation of a heat-integrated hydrogen production system by reforming methane and carbon dioxide. J Taiwan Inst Chem E 2013;44:929-35.
    Xu J, Froment GF. Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE J 1989;35:88-96.
    Yan F, Luo SY, Hu ZQ, Xiao B, Cheng G. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresour Technol 2010;101:5633-7.
    Yuehong Z, Hao W, Zhihong X. Conceptual design and simulation study of a co-gasification technology. Energy Convers Manage 2006;47:1416-28.
    Zhang G, Yang Y, Jin H, Xu G. Zhang K. Proposed combined-cycle power system based on oxygen-blown coal partial gasification. Appl Energ 2013;102:735-45.
    Zhang Y, Li B, Li H, Zhang B. Exergy analysis of biomass utilization via steam gasification and partial oxidation. Thermochim Acta 2012;538:21-8.
    Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E. Simulation of a tubular solid oxide fuel cell stack using Aspen Plus unit operation models. Energy Convers Manage 2005;46:181-96.
    Zhu L, Jiang P, Fan J. Comparison of carbon capture IGCC with chemical-looping combustion and with calcium-looping process driven by coal for power generation. Chem Eng Res Des 2015;104:110-24.

    無法下載圖示 校內:2026-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE