簡易檢索 / 詳目顯示

研究生: 陳柔瑞
Chin, Jo-Rhui
論文名稱: 去整合蛋白的KGD迴圈、C端區域以及二聚體對於整合蛋白交互作用所扮演的角色
The Roles of the KGD Loop, C-terminus, and Dimeric Forms of Disintegrins in the Interactions of Integrins
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 128
中文關鍵詞: 整合蛋白馬來蝮蛇蛇毒蛋白龜殼花蛇毒蛋白二聚體
外文關鍵詞: Integrin, Rhodostomin, Trimucrin, dimer
相關次數: 點閱:151下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在蛇毒所發現的去整合蛋白(disintegrin)是個有效的整合蛋白(integrin)抑製劑家族,由47至84個氨基酸以及4至7對雙硫鍵所組成。然而,他們抑制很多整合蛋白β1和β3家族並且會造成血小板低下。在本研究中,利用馬來蝮蛇(Rhodostomin, Rho)和龜殼花(Trimucrin, Tmu)蛇毒去整合蛋白作為骨架來探討:(1)二聚體形式的去整合蛋白對於抑制整合蛋白活性的影響;(2)RGD迴圈、連接區域以及C端區域對於結合至整合蛋白所扮演的角色;(3)馬來蝮蛇蛇毒蛋白的C端區域(65PDLX)對於整合蛋白αvβ3和α5β1交互作用所扮演的角色,同時設計對整合蛋白αIIbβ3具有高安全指數的拮抗劑。細胞黏附實驗證實了二聚體蛋白相較於單體蛋白可以提升對整合蛋白的親和力,並且這些整合蛋白相對的提升幅度是αIIbβ3 > αvβ3 ~ α5β1。例如,Rho二聚體蛋白抑制整合蛋白αIIbβ3的活性有12.5倍的提升,IC50為4.7 nM。Rho、KG 和ARLDDL二聚體蛋白對於抑制整合蛋白αvβ3的活性有3.7至4.9倍的提升,IC50為2.9至11.5 nM。有趣的是,KG 二聚體對於抑制整合蛋白α5β1的活性具有4.7倍的提升,IC50為6.6 nM。並且,KG二聚體可以抑制由血管內皮生長因子所誘導的人臍靜脈內皮細胞的增生(VEGF-induced HUVEC proliferation),IC50為141.8 nM,其活性相較於野生型的馬來蝮蛇蛇毒蛋白有78倍的提升。我們發現C端區域由NGLYG突變成NRLYG會增加對整合蛋白αIIbβ3的親和力。相反的,C端區域突變株,Y68E、Y68G和Y68K的分析結果得知他們對於整合蛋白αvβ3和α5β1的活性並沒有顯著的差異。AKGDWN序列的龜殼花蛇毒蛋白突變株抑制血小板凝集的活性高,IC50約51至125 nM,但是具有3至4的低安全指數值。相反的,連接區域為IEEGT序列的突變株具有25至35的高安全指數值,但是活性會低於1000 nM。KGD突變株相對的安全指數值為KGDNP > KGDRP > KGDFP > KGDWN。這些結果證實AKGDRP突變株可能是個有潛力的抗血栓藥物,因為它抑制血小板凝集的活性高達154至192 nM,同時具有12至15的中等安全指數值。另外,我們發現39KKKRT48AKGDRP67PRNGLYG突變株在CHO所表現的αIIbβ3系統中,它抑制由錳離子活化的整合蛋白αIIbβ3相較於靜止狀態的整合蛋白αIIbβ3有五倍的提升。本項研究結果能夠提供未來針對具專一性的整合蛋白藥物設計的基礎。

    Disintegrins are a family of potent integrin inhibitors found in snake venoms that contain 47 to 84 amino acids with 4-7 disulfide bonds. However, they inhibit many integrins of the β1 and β3 classes and caused thrombocytopenia. In this study, snake venom disintegrins, Rhodostomin (Rho) and Trimucrin (Tmu), were used as protein scaffolds to study: (1) the effect of dimeric forms on the inhibition of integrins; (2) the roles of RGD loop, linker and C-terminal regions in the binding to integrins; and (3) the role of Rho C-terminal region (65PDLX) in the interactions of integrins αvβ3 and α5β1, as well as to design integrin αIIbβ3-specific antagonist with high safety index. Cell adhesion analysis showed that dimeric proteins in comparison with their corresponding monomers exhibited higher integrin affinity, and the relative increases were integrins αIIbβ3 > αvβ3 ~ α5β1. For example, Rho dimer exhibited 12.5-fold increase in inhibiting integrin αIIbβ3 with the IC50 value of 4.7 nM. Rho, KG (a pan-integrins mutant), and ARLDDL (an αvβ3-specific mutant) dimers caused 3.7-4.9-fold increases in inhibiting integrin αvβ3 with the IC50 values of 2.9-11.5 nM. Interestingly, KG dimer exhibited a 4.7-fold increase in inhibiting integrin α5β1 with the IC50 value of 6.6 nM. It inhibited VEGF-induced HUVEC proliferation with IC50 value of 141.8 nM, causing a 78-fold increase in activity as compared with wild-type Rho. We found that the C-terminal mutation of NGLYG into NRLYG increased its integrin αIIbβ3 binding affinity. In contrast, the analysis of C-terminal mutants Y68E, Y68G, and Y68K showed no significant effect on their integrins αvβ3 and α5β1 activity. Tmu mutants with an AKGDWN motif retained high integrin activity with the IC50 values of 51-125 nM but had low safety index values of 3-4. In contrast, the linker mutants with IEEGT sequence exhibited high safety index values of 25-35 and had lower activity with the IC50 values of ~1000 nM. The analysis of the KGD mutants showed that the relative safety indexes were KGDNP > KGDRP > KGDFP > KGDWN. These results suggest that the AKGDRP mutants may serve as potential antithrombotic drug lead due to high activity in inhibiting platelet aggregation of 154-192 nM and medium safety index values of 12-15. In particular, we found that the 39KKKRT-48AKGDRP-67PRNGLYG mutant exhibited a 5-fold increase in the inhibitory activity toward Mn2+-activated integrin αIIbβ3 as compared to resting form in CHO-expressing αIIbβ3 system. The results of this study will serve as the basis for the design of integrin-specific drugs.

    Tables of Contents CHINESE ABSTRACT I ABSTRACT II ACKNOWLEDGMENT IV TABLE OF CONTENTS V LIST OF TABLES X LIST OF FIGURES XII ABBREVIATION XIV CHAPTER 1 INTRODUCTION 1 1.1 RATIONALE 1 1.2 INTEGRINS 2 1.2.1 Overview of Integrins 2 1.2.2 Integrins and Ligands Binding 2 1.2.3 Integrin clustering and Multivalent ligands 4 1.2.4 Integrins and Ligands Complex Structures 4 1.2.5 Integrins and Diseases 5 1.2.6 Integrins and Thromboembolic Disorders 6 1.2.7 Integrins and Cancers 7 1.3 DISINTEGRINS 8 1.3.1 Overview of Disintegrins 8 1.3.2 Functional Regions of Disintegrins 10 1.3.2.1 RGD Loop 10 1.3.2.2 Linker Region 10 1.3.2.3 C-terminal Region 11 1.3.3 Biomedical Applications of Disintegrins 11 1.4 SCAFFOLD FOR DRUG DESIGN 12 1.4.1 Rhodostomin (Rho) 12 1.4.2 Trimucrin (Tmu) 13 1.5 THE CHALLENGES OF INTEGRIN ANTAGONISTS AS PHARMACEUTICALS 13 1.6 MONOCLONAL ANTIBODY AP2 AS THE DETECTION OF INTEGRIN ACTIVATION 14 1.7 THE REGULATION OF INTEGRIN ACTIVATION BY MN2+ 15 1.8 MOLECULAR DOCKING 15 CHAPTER 2 SPECIFIC AIMS AND STRATEGIES 17 2.1 THE EFFECT OF DIMERIC FORMS OF DISINTEGRINS ON THE INHIBITION OF INTEGRINS 17 2.2 αvβx- AND α5β1-SPECIFIC RHO MUTANTS ON THE INHIBITION OF CELL PROLIFERATION 18 2.3 THE ROLES OF RGD LOOP, LINKER AND C-TERMINAL REGIONS OF TMU ON PLATELET AGGREGATION AND SAFETY INDEX VALUE 18 2.4 THE ROLE OF RHO C-TERMINAL REGION (65PDLX) IN THE INTERACTIONS OF INTEGRINS αvβ3 AND α5β1 20 CHAPTER 3 MATERIALS AND METHODS 21 3.1 PREPARATION OF RECOMBINANT RHO, TMU, AND THEIR MUTANTS 21 3.1.1 Construction of Rho and Tmu Mutants 21 3.1.1.1 List of Strains, Vector and Culture Media Recipes 21 3.1.1.2 Overlap Extension PCR 23 3.1.1.3 Ligation of Inserted DNA and Yeast Recombination Vector 24 3.1.1.4 Transformation of Plasmid into E. coli Strain XL1-Blue 24 3.1.1.5 Transformation of Linearized plasmid into Pichia strain X-33 25 3.1.2 Expression of Rho and Tmu proteins 26 3.1.2.1 List of Culture Media and Solution Recipes 26 3.1.2.2 Small Scale Expression of Rho and Tmu proteins 27 3.1.2.3 Large Scale Expression of Rho and Tmu proteins 27 3.1.3 Purification of Rho and Tmu proteins 28 3.1.3.1 List of Buffer Recipes 28 3.1.3.2 Capto MMC Chromatography of Rho and Tmu Proteins 30 3.1.3.3 Reverse-phase High Performance liquid Chromatography of Rho and Tmu Proteins 31 3.2 MASS SPECTROMETRIC MEASUREMENT 32 3.3 PLATELET AGGREGATION ASSAY 32 3.3.1 List of Solution Recipes 32 3.3.2 Preparation of Platelet-rich and Platelet-poor plasma 33 3.3.3 Functional Analysis of Rho and Tmu Proteins in Inhibiting Platelet Aggregation 34 3.4 PLATELET ACTIVATION ASSAY 35 3.5 CELL ADHESION ASSAY 36 3.5.1 List of Cell Lines and Culture Medium 36 3.5.2 Extracellular matrix preparation 37 3.5.2.1 List of Solution Recipes 37 3.5.2.2 Fibronectin Purification 40 3.5.2.3 Vitronectin Purification 40 3.5.3 Cell Cultures 42 3.5.4 Functional Analysis of Rho and Tmu Proteins in Inhibiting Cell Adhesion 42 3.5.5 Tmu Proteins in Inhibiting Mn2+-activated CHO-αIIbβ3 Adhesion 44 3.6 CELL PROLIFERATION ASSAY 44 3.6.1 List of Cell Line and Culture Medium 44 3.6.2 Functional Analysis of Rho Proteins in Inhibiting Cell Proliferation 46 3.7 MOLECULAR DOCKING 47 3.7.1 Molecular Docking of Tmu Mutants into Integrin αIIbβ3 47 CHAPTER 4 RESULTS 48 4.1 EXPRESSION, PURIFICATION AND MASS CHARACTERIZATION OF RHO AND TMU MUTANTS 48 4.2 THE EFFECT OF DIMERIC DISINTEGRINS ON INTEGRIN RECOGNITION 49 4.2.1 The Effect of Dimeric Disintegrins on Platelet Aggregation 49 4.2.2 The Effect of Dimeric Disintegrins on Cell Adhesion 50 4.3 THE EFFECT OF KG DIMER ON CELL PROLIFERATION 50 4.4 THE EFFECT OF RGD LOOP, LINKER, AND C-TERMINAL REGIONS ON PLATELET AGGREGATION AND SAFETY INDEX VALUE 51 4.4.1 The Effect of KGD Loop (Residues 50-55) on Platelet Aggregation and Safety Index Value 51 4.4.2 The Effect of Linker Region (Residues 41-55) on Platelet Aggregation and Safety Index Value 52 4.4.3 The Effect of C-terminal Region (Residues 67-73) on Platelet Aggregation and Safety Index Value 53 4.5 THE EFFECTS OF RHO AND TMU MUTANTS ON MN2+-ACTIVATED AND RESTING INTEGRIN αIIbβ3 RECOGNITION 54 4.6 THE EFFECT OF RHO C-TERMINAL REGION (65PDLX) ON INTEGRIN RECOGNITION 55 CHAPTER 5 DISCUSSION 56 5.1 THE EFFECT OF DIMERIC FORMS OF DISINTEGRINS ON THE INHIBITION OF INTEGRINS 56 5.1.1 The Ways in which Dimeric Proteins Increase its Binding Affinity to Integrins 56 5.1.2 The Difference in the Binding Affinity of Dimeric Disintegrins on Integrins αvβ3 and α5β1 57 5.2 THE ROLES OF RGD LOOP, LINKER AND C-TERMINAL REGIONS OF TMU ON PLATELET AGGREGATION AND SAFETY INDEX VALUE 58 5.2.1 The Role of R70 residue on Integrin αIIbβ3 Recognition 58 5.2.2 The Effect of C-terminal Region with 67PRNS Amino Acid Sequence on Safety Index Value 59 5.2.3 The Effect of Residue 54 with Hydrophobic Amino Acid on Safety Index Value 59 5.2.4 The Improvement of Tmu Mutants with Higher Activity and Safety Index Value 60 CHAPTER 6 CONCLUSIONS 61 CHAPTER 7 FUTURE PERSPECTIVE 63 REFERENCES 64 TABLES 72 FIGURES 91 APPENDIX TABLES 101 APPENDIX FIGURES 106  

    Akiyama, S. K. (2001). "Purification of vitronectin." Curr Protoc Cell Biol Chapter 10: Unit 10 16.
    Avraamides, C. J., B. Garmy-Susini and J. A. Varner (2008). "Integrins in angiogenesis and lymphangiogenesis." Nature reviews. Cancer 8(8): 604-617.
    Borradori, L. and A. Sonnenberg (1999). "Structure and Function of Hemidesmosomes: More Than Simple Adhesion Complexes." Journal of Investigative Dermatology 112(4): 411-418.
    Boturyn, D., J. L. Coll, E. Garanger, M. C. Favrot and P. Dumy (2004). "Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis." J Am Chem Soc 126(18): 5730-5739.
    Bougie, D. W., P. R. Wilker, E. D. Wuitschick, B. R. Curtis, M. Malik, S. Levine, R. N. Lind, J. Pereira and R. H. Aster (2002). "Acute thrombocytopenia after treatment with tirofiban or eptifibatide is associated with antibodies specific for ligand-occupied GPIIb/IIIa." Blood 100(6): 2071-2076.
    Calderwood, D. A., I. D. Campbell and D. R. Critchley (2013). "Talins and kindlins: partners in integrin-mediated adhesion." Nat Rev Mol Cell Biol 14(8): 503-517.
    Calvete, J. J., C. Marcinkiewicz, D. Monleon, V. Esteve, B. Celda, P. Juarez and L. Sanz (2005). "Snake venom disintegrins: evolution of structure and function." Toxicon 45(8): 1063-1074.
    Chittasupho, C. (2012). "Multivalent ligand: design principle for targeted therapeutic delivery approach." Ther Deliv 3(10): 1171-1187.
    Coller, B. S. and L. E. Scudder (1985). "Inhibition of dog platelet function by in vivo infusion of F(ab')2 fragments of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor." Blood 66(6): 1456-1459.
    Daculsi, G., P. Pilet, M. Cottrel and G. Guicheux (1999). "Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization." J Biomed Mater Res 47(2): 228-233.
    Danilov, Y. N. and R. L. Juliano (1989). "(Arg-Gly-Asp)n-albumin conjugates as a model substratum for integrin-mediated cell adhesion." Exp Cell Res 182(1): 186-196.
    de Vries, S. J., M. van Dijk and A. M. Bonvin (2010). "The HADDOCK web server for data-driven biomolecular docking." Nat Protoc 5(5): 883-897.
    Desgrosellier, J. S. and D. A. Cheresh (2010). "Integrins in cancer: biological implications and therapeutic opportunities." Nat Rev Cancer 10(1): 9-22.
    Dransfield, I., C. Cabanas, A. Craig and N. Hogg (1992). "Divalent cation regulation of the function of the leukocyte integrin LFA-1." J Cell Biol 116(1): 219-226.
    Eikelboom, J. W., J. Hirsh, F. A. Spencer, T. P. Baglin and J. I. Weitz (2012). "Antiplatelet drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines." Chest 141(2 Suppl): e89S-119S.
    Estevez, B., B. Shen and X. Du (2015). "Targeting integrin and integrin signaling in treating thrombosis." Arterioscler Thromb Vasc Biol 35(1): 24-29.
    Friedrichs, K., P. Ruiz, F. Franke, I. Gille, H. J. Terpe and B. A. Imhof (1995). "High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival." Cancer Res 55(4): 901-906.
    Fujii, Y., D. Okuda, Z. Fujimoto, K. Horii, T. Morita and H. Mizuno (2003). "Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD." J Mol Biol 332(5): 1115-1122.
    Furie, B. (2009). "Pathogenesis of thrombosis." Hematology Am Soc Hematol Educ Program: 255-258.
    Gao, C., B. Boylan, D. Bougie, J. C. Gill, J. Birenbaum, D. K. Newman, R. H. Aster and P. J. Newman (2009). "Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcgammaRIIa and the integrin beta3 cytoplasmic domain." J Clin Invest 119(3): 504-511.
    Goh, K. L., J. T. Yang and R. O. Hynes (1997). "Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos." Development 124(21): 4309-4319.
    Gould, R. J., M. A. Polokoff, P. A. Friedman, T. F. Huang, J. C. Holt, J. J. Cook and S. Niewiarowski (1990). "Disintegrins: a family of integrin inhibitory proteins from viper venoms." Proc Soc Exp Biol Med 195(2): 168-171.
    Handl, H. L., J. Vagner, H. Han, E. Mash, V. J. Hruby and R. J. Gillies (2004). "Hitting multiple targets with multimeric ligands." Expert Opin Ther Targets 8(6): 565-586.
    Hosotani, R., M. Kawaguchi, T. Masui, T. Koshiba, J. Ida, K. Fujimoto, M. Wada, R. Doi and M. Imamura (2002). "Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis." Pancreas 25(2): e30-35.
    Hsu, M. Y., D. T. Shih, F. E. Meier, P. Van Belle, J. Y. Hsu, D. E. Elder, C. A. Buck and M. Herlyn (1998). "Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma." Am J Pathol 153(5): 1435-1442.
    Huang, T. F., C. H. Chang, P. L. Ho and C. H. Chung (2008). "FcgammaRII mediates platelet aggregation caused by disintegrins and GPIIb/IIIa monoclonal antibody, AP2." Exp Hematol 36(12): 1704-1713.
    Huang, T. F., Y. J. Wu and C. Ouyang (1987). "Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom." Biochim Biophys Acta 925(3): 248-257.
    Hung, Y. C., C. C. Hsu, C. H. Chung and T. F. Huang (2016). "The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-kappaB and MAPK activation." Naunyn Schmiedebergs Arch Pharmacol.
    Huveneers, S., H. Truong and H. J. Danen (2007). "Integrins: signaling, disease, and therapy." Int J Radiat Biol 83(11-12): 743-751.
    Hynes, R. O. (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 673-687.
    Lakkakorpi, P. T., M. H. Helfrich, M. A. Horton and H. K. Vaananen (1993). "Spatial organization of microfilaments and vitronectin receptor, alpha v beta 3, in osteoclasts. A study using confocal laser scanning microscopy." Journal of Cell Science 104(3): 663-670.
    Li, R., N. Mitra, H. Gratkowski, G. Vilaire, R. Litvinov, C. Nagasami, J. W. Weisel, J. D. Lear, W. F. DeGrado and J. S. Bennett (2003). "Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations." Science 300(5620): 795-798.
    Marcinkiewicz, C. (2005). "Functional characteristic of snake venom disintegrins: potential therapeutic implication." Curr Pharm Des 11(7): 815-827.
    Marcinkiewicz, C. (2013). "Applications of snake venom components to modulate integrin activities in cell-matrix interactions." Int J Biochem Cell Biol 45(9): 1974-1986.
    Marcinkiewicz, C., S. Vijay-Kumar, M. A. McLane and S. Niewiarowski (1997). "Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site." Blood 90(4): 1565-1575.
    Monleon, D., V. Esteve, H. Kovacs, J. J. Calvete and B. Celda (2005). "Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR." Biochem J 387(Pt 1): 57-66.
    Mousa, S. A. (1999). "Antiplatelet therapies: from aspirin to GPIIb/IIIa-receptor antagonists and beyond." Drug Discov Today 4(12): 552-561.
    Nagae, M., S. Re, E. Mihara, T. Nogi, Y. Sugita and J. Takagi (2012). "Crystal structure of alpha5beta1 integrin ectodomain: atomic details of the fibronectin receptor." J Cell Biol 197(1): 131-140.
    Nakamura, I., M. F. Pilkington, P. T. Lakkakorpi, L. Lipfert, S. M. Sims, S. J. Dixon, G. A. Rodan and L. T. Duong (1999). "Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone." J Cell Sci 112 ( Pt 22): 3985-3993.
    Ni, H., A. Li, N. Simonsen and J. A. Wilkins (1998). "Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain." J Biol Chem 273(14): 7981-7987.
    Nip, J., H. Shibata, D. J. Loskutoff, D. A. Cheresh and P. Brodt (1992). "Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin." J Clin Invest 90(4): 1406-1413.
    Olsson, A.-K., A. Dimberg, J. Kreuger and L. Claesson-Welsh (2006). "VEGF receptor signaling ? in control of vascular function." Nat Rev Mol Cell Biol 7(5): 359-371.
    Park, H. S., C. Kim and Y. K. Kang (2002). "Preferred conformations of RGDX tetrapeptides to inhibit the binding of fibrinogen to platelets." Biopolymers 63(5): 298-313.
    Peter, K., M. Schwarz, T. Nordt and C. Bode (2001). "Intrinsic activating properties of GP IIb/IIIa blockers." Thromb Res 103 Suppl 1: S21-27.
    Reiss, S., M. Sieber, V. Oberle, A. Wentzel, P. Spangenberg, R. Claus, H. Kolmar and W. Losche (2006). "Inhibition of platelet aggregation by grafting RGD and KGD sequences on the structural scaffold of small disulfide-rich proteins." Platelets 17(3): 153-157.
    Sameh Sarray, J. L., Mohamed El Ayeb and Naziha Marrakchi (2013). "Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects." Bioactive Food Peptides in Health and Disease: 219-238.
    Scarborough, R. M., M. A. Naughton, W. Teng, J. W. Rose, D. R. Phillips, L. Nannizzi, A. Arfsten, A. M. Campbell and I. F. Charo (1993). "Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa." J Biol Chem 268(2): 1066-1073.
    Shattil, S. J., C. Kim and M. H. Ginsberg (2010). "The final steps of integrin activation: the end game." Nat Rev Mol Cell Biol 11(4): 288-300.
    Sheu, J. R., M. H. Yen, Y. C. Kan, W. C. Hung, P. T. Chang and H. N. Luk (1997). "Inhibition of angiogenesis in vitro and in vivo: comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-alpha(v)beta3 integrin monoclonal antibody." Biochim Biophys Acta 1336(3): 445-454.
    Shimaoka, M. and T. A. Springer (2003). "Therapeutic antagonists and conformational regulation of integrin function." Nat Rev Drug Discov 2(9): 703-716.
    Springer, T. A., J. Zhu and T. Xiao (2008). "Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3." J Cell Biol 182(4): 791-800.
    Sumathipala, R., C. Xu, J. Seago, A. P. Mould, M. J. Humphries, S. E. Craig, Y. Patel, E. S. Wijelath, M. Sobel and S. Rahman (2006). "The "linker" region (amino acids 38-47) of the disintegrin elegantin is a novel inhibitory domain of integrin alpha5beta1-dependent cell adhesion on fibronectin: evidence for the negative regulation of fibronectin synergy site biological activity." J Biol Chem 281(49): 37686-37696.
    Takagi, J., B. M. Petre, T. Walz and T. A. Springer (2002). "Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling." Cell 110(5): 599-511.
    Takayama, S., S. Ishii, T. Ikeda, S. Masamura, M. Doi and M. Kitajima (2005). "The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression." Anticancer Res 25(1a): 79-83.
    Tsai, I. H., Y. M. Wang and Y. H. Lee (1994). "Characterization of a cDNA encoding the precursor of platelet aggregation inhibition and metalloproteinase from Trimeresurus mucrosquamatus venom." Biochim Biophys Acta 1200(3): 337-340.
    Vachon, P. H., H. Xu, L. Liu, F. Loechel, Y. Hayashi, K. Arahata, J. C. Reed, U. M. Wewer and E. Engvall (1997). "Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy." J Clin Invest 100(7): 1870-1881.
    Van Agthoven, J. F., J. P. Xiong, J. L. Alonso, X. Rui, B. D. Adair, S. L. Goodman and M. A. Arnaout (2014). "Structural basis for pure antagonism of integrin alphaVbeta3 by a high-affinity form of fibronectin." Nat Struct Mol Biol 21(4): 383-388.
    Xiao, T., J. Takagi, B. S. Coller, J. H. Wang and T. A. Springer (2004). "Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics." Nature 432(7013): 59-67.
    Xiong, J. P., B. Mahalingham, J. L. Alonso, L. A. Borrelli, X. Rui, S. Anand, B. T. Hyman, T. Rysiok, D. Muller-Pompalla, S. L. Goodman and M. A. Arnaout (2009). "Crystal structure of the complete integrin alphaVbeta3 ectodomain plus an alpha/beta transmembrane fragment." J Cell Biol 186(4): 589-600.
    Xiong, J. P., T. Stehle, B. Diefenbach, R. Zhang, R. Dunker, D. L. Scott, A. Joachimiak, S. L. Goodman, M. A. C. I. N. S. O. Arnaout and Pmid (2001). "Crystal structure of the extracellular segment of integrin alphaVbeta3." Science 294(5541): 339-345.
    Xiong, J. P., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L. Goodman and M. A. Arnaout (2002). "Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand." Science 296(5565): 151-155.
    Yeh, C. H., H. C. Peng, R. S. Yang and T. F. Huang (2001). "Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells." Mol Pharmacol 59(5): 1333-1342.
    Zhang, K. and J. Chen (2012). "The regulation of integrin function by divalent cations." Cell Adhesion & Migration 6(1): 20-29.
    Zhu, J., J. Zhu and T. A. Springer (2013). "Complete integrin headpiece opening in eight steps." J Cell Biol 201(7): 1053-1068.
    徐錦旺 (2015). 利用第三型纖維黏結蛋白的第十個模組設計對整合蛋白αvβ3具專一性的拮抗劑. 碩士, 國立成功大學.
    張耀宗 (2014). 馬來腹蛇蛇毒蛋白其RGD loop、 linker區域與C端突變蛋白的結構與辨識整合蛋白活性的關聯性研究. 博士, 國立成功大學.
    陳怡均 (2012). 利用Echistatin 和 Rhodostomin的RGD 序列及C端區域來探討其在整合蛋白辨識上的角色. 博士, 國立成功大學.
    陳秋月 (2005). 利用Rhodostomin研究Integrin的辨識序列和研發製備胺基酸選擇性同位素標示蛋白的方法. 博士, 國立成功大學.
    彭俊業 (2015). 利用第三型纖維黏蛋白的第九個及第十個模組片段設計對整合蛋白α5β1具有專一性的拮抗劑. 碩士, 國立成功大學.
    楊智凱 (2014). 探討C端區域在馬來腹蛇蛇毒蛋白中對於整合蛋白辨識所扮演的角色. 碩士, 國立成功大學.
    廖靖婷 (2008). 探討Rhodostomin及Trimucin中連接區域對於整合蛋白辨識所扮演的角色. 碩士, 國立成功大學.

    下載圖示 校內:2021-07-20公開
    校外:2021-07-20公開
    QR CODE