| 研究生: |
蔡孟典 Tsai, Meng-Dian |
|---|---|
| 論文名稱: |
金屬有機骨架結合導電高分子之複合材料於電化學之相關應用 Composites of Conducting Polymers and Metal−Organic Frameworks for Electrochemical Applications |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 電化學感測 、電化學儲能 、金屬有機骨架 、亞硝酸根離子感測 、導電高分子 |
| 外文關鍵詞: | Electrochemical sensing, electrochemical energy storage, metal−organic framework, nitrite ion sensing, conducting polymer |
| 相關次數: | 點閱:52 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架 (Metal−Organic Frameworks, MOFs)是近二十多年來興起的一系列孔洞材料,其特點包括高比表面積、互通的孔洞結構及多變化的結構可調性。由於MOF擁有比其他材料更高的活性位點密度及互通孔洞結構,因此在催化、電化學感測、電化學儲能等等應用上都具有相當大的潛力,可在電極表面提供高密度的活性位點。然而,將MOF作為電極的修飾層時,必須考慮MOF在電解液中的穩定性問題。由於大多數MOF在水相電解液中並不穩定,所以此篇碩士論文嘗試使用以鋯金屬簇作為節點的MOF,以確保MOF在中性及酸性中皆能維持孔洞結構。
除了穩定性問題,MOF在電化學應用中的另一個困境是MOF的導電度通常不高,這將導致電子無法有效到達每個活性位點,進而無法發揮MOF具有多活性位點的優勢。因此,此篇碩士論文嘗試使用導電高分子與MOF形成複合材料,並應用於電化學感測與電化學儲能。
在電化學感測部份,選擇了以卟啉為連接器的MOF與導電高分子Poly(3,4-ethylenedioxythiophene) (PEDOT),並透過選擇不同的複合材料合成方式,得到了三種不同導電高分子在MOF中的情況,分別是導電高分子僅在MOF顆粒間、導電高分子僅於MOF孔洞內部與導電高分子同時存在於MOF的孔洞內及顆粒間,所有材料的顆粒形貌、結晶度、孔隙度與電化學行為皆被探討。並從電化學感測亞硝酸鹽的結果可以得知透過將導電高分子選擇性限制於孔洞內後,可以在提高靈敏度的情況下,同時抑制導電高分子的非法拉第電流,在有比原先MOF有更高的靈敏度與比導電高分子更小的雜訊的情況下,從而得到相比於其他對照組都還要來得更低的感測極限。
而在電化學儲能的部分則是選擇了極具潛力的導電高分子Polyaniline (PANI)和後修飾磺酸官能基後的二維MOF-ZrBTB-SO3,從過去研究發現到帶有負電磺酸根的材料可在帶正電苯胺的聚合環境中透過靜電吸引力分散苯胺的聚合,因此在此處使用了ZrBTB-SO3扮演著PANI分散劑的角色,分散PANI於MOF之上,所有材料的表面形貌、結晶度、孔隙度與電化學行為皆被探討。並從電化學的測試結果發現到,透過添加適當的MOF可以有效提高導電高分子的比電容量,最佳化條件下的PANI@ZrBTB-SO3 (1:1.5)有著515 F/g的比電容值,相比於原先的PANI的230 F/g有著兩倍多的提升效果。兩項研究成果展示了高水穩定性的鋯基MOF與導電高分子形成的複合材料的發展可能性,並提供了關於此類型複合材料的設計想法。
This thesis investigates the electrochemical application of composites containing metal−organic frameworks (MOFs) and conducting polymers. The first section involves the confinement of poly (3,4-ethylenedioxythiophene) (PEDOT) within the pore of NU-902, designated as PEDOT/NU-902, with a focus on its potential application in nitrite sensors. Results demonstrate that PEDOT/NU-902 exhibits reduced noise levels in comparison to PEDOT, PEDOT/NU-902-physical blends, and PEDOT/NU-902-no PSS. The confinement of PEDOT within NU-902 pores proves effective in noise suppression, leading to the attainment of the smallest limit of detection.
In the second section, a sulfonate-functionalized two-dimensional MOF is employed as a dispersant for polyaniline, a conducting polymer utilized in energy storage devices. This approach enhances the electrochemical performance of polyaniline by reducing aggregation. Through the optimization of the ratio between MOF and conducting polymer, the composite achieves the highest specific capacitance across various charge-discharge current densities, showing its potential for energy storage applications. Both studies underscore the versatility of MOFs in augmenting the properties of conducting polymers for diverse applications, ranging from electrocatalytic sensors to energy storage application. These findings provide valuable insights into the design of advanced materials with enhanced performance characteristics.
1. González, J., E. Laborda, and Á. Molina, Voltammetric kinetic studies of electrode reactions: guidelines for detailed understanding of their fundamentals. Journal of Chemical Education, 100, 2, 697-706. 2022.
2. Chang, T. E., C. H. Chuang, and C. W. Kung, An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochemistry Communications, 122, 106899. 2021.
3. Kreno, L. E., K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Metal–organic framework materials as chemical sensors. Chemical Reviews, 112, 2, 1105-1125. 2012.
4. Wang, Y. S., J. L. Liao, Y. S. Li, Y. C. Chen, J. H. Li, W. H. Ho, W. H. Chiang, and C. W. Kung, Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Applied Nano Materials, 3, 2, 1448-1456. 2020.
5. Chuang, C. H., J. H. Li, Y. C. Chen, Y. S. Wang, and C. W. Kung, Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. The Journal of Physical Chemistry C, 124, 38, 20854-20863. 2020.
6. Anantharaj, S., S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 6, 12, 8069-8097. 2016.
7. Thomas, S., T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, and A. S. Nair, A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A, 2, 13, 4474-4490. 2014.
8. Zhang, H. X., A. M. Cao, J. S. Hu, L. J. Wan, and S. T. Lee, Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry, 78, 6, 1967-1971. 2006.
9. Chen, R., M. Yu, R. P. Sahu, I. K. Puri, and I. Zhitomirsky, The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Advanced Energy Materials, 10, 20. 2020.
10. Bakker, E. and M. Telting Diaz, Electrochemical sensors. Analytical Chemistry, 74, 12, 2781-2800. 2002.
11. Ding, Y., Y. Wang, L. Su, M. Bellagamba, H. Zhang, and Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics, 26, 2, 542-548. 2010.
12. Clark, R. B. and J. E. Dick, Electrochemical sensing of perfluorooctanesulfonate (PFOS) using ambient oxygen in river water. ACS Sensors, 5, 11, 3591-3598. 2020.
13. Bobacka, J., A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors. Chemical Reviews, 108, 2, 329-351. 2008.
14. Kung, C. W., T. H. Chang, L. Y. Chou, J. T. Hupp, O. K. Farha, and K. C. Ho, Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 58, 51-56. 2015.
15. Wang, Y. C., Y. C. Chen, W. S. Chuang, J. H. Li, Y. S. Wang, C. H. Chuang, C. Y. Chen, and C. W. Kung, Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Applied Nano Materials, 3, 9, 9440-9448. 2020.
16. Tsai, M. D., Y. C. Wang, Y. L. Chen, Y. H. Chen, C. H. Shen, and C. W. Kung, Selectively Confined Poly(3,4-Ethylenedioxythiophene) in the Nanopores of a Metal–Organic Framework for Electrochemical Nitrite Detection with Reduced Limit of Detection. ACS Applied Nano Materials, 5, 9, 12980-12990. 2022.
17. Park, S., H. Boo, and T. D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556, 1, 46-57. 2006.
18. Chang, Y. N., C. H. Shen, C. W. Huang, M. D. Tsai, and C. W. Kung, Defective Metal–Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing. ACS Applied Nano Materials, 6, 5, 3675-3684. 2023.
19. Zhao, F., S. Zhou, and Y. Zhang, Ultrasensitive Detection of Hydrogen Peroxide using Bi2Te3 Electrochemical Sensors. ACS Applied Materials & Interfaces, 13, 3, 4761-4767. 2021.
20. Horn, M., J. MacLeod, M. Liu, J. Webb, and N. Motta, Supercapacitors: A new source of power for electric cars? Economic Analysis and Policy, 61, 93-103. 2019.
21. Hu, L. B., W. Chen, X. Xie, N. A. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, and Y. Cui, Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 5, 11, 8904-8913. 2011.
22. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3, 10, 1063-1069. 2017.
23. Rakhi, R. B., W. Chen, D. Y. Cha, and H. N. Alshareef, Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. Nano Letters, 12, 5, 2559-2567. 2012.
24. Sridhar, D., H. Yu, J. L. Meunier, and S. Omanovic, Carbon nano-fiber forest foundation for ruthenium oxide pseudo-electrochemical capacitors. Materials Advances, 1, 2, 215-227. 2020.
25. Liu, T. Y., L. Finn, M. H. Yu, H. Y. Wang, T. Zhai, X. H. Lu, Y. X. Tong, and Y. Li, Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 14, 5, 2522-2527. 2014.
26. Nejati, S., T. E. Minford, Y. Y. Smolin, and K. K. S. Lau, Enhanced Charge Storage of Ultrathin Polythiophene Films within Porous Nanostructures. ACS Nano, 8, 6, 5413-5422. 2014.
27. Howarth, A. J., Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1, 3, 1-15. 2016.
28. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2, 1, 30-37. 2019.
29. Yaghi, O. M., G. Li, and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378, 6558, 703-706. 1995.
30. Yaghi, O. M. and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society, 117, 41, 10401-10402. 1995.
31. Yaghi, O. M., M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 6941, 705-714. 2003.
32. Eddaoudi, M., D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'keeffe, and O. M. Yaghi, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks. Accounts of Chemical Research, 34, 4, 319-330. 2001.
33. Eddaoudi, M., J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295, 5554, 469-472. 2002.
34. Hönicke, I. M., I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans, and S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angewandte Chemie International Edition, 57, 42, 13780-13783. 2018.
35. Wuest, J. D., Atoms and the void: modular construction of ordered porous solids. Nature Communications, 11, 1, 4652. 2020.
36. Sabo, M., A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17, 36, 3827-3832. 2007.
37. Chen, Y. C., W. H. Chiang, D. Kurniawan, P. C. Yeh, K. i. Otake, and C. W. Kung, Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Interfaces, 11, 38, 35319-35326. 2019.
38. Deria, P., J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp, and O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. Journal of the American Chemical Society, 135, 45, 16801-16804. 2013.
39. Yuan, S., Y. P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T. F. Liu, X. Lian, and H. C. Zhou, Cooperative cluster metalation and ligand migration in zirconium metal–organic frameworks. Angewandte Chemie International Edition, 54, 49, 14696-14700. 2015.
40. Liu, T. F., N. A. Vermeulen, A. J. Howarth, P. Li, A. A. Sarjeant, J. T. Hupp, and O. K. Farha, Adding to the Arsenal of Zirconium‐Based Metal–Organic Frameworks: the Topology as a Platform for Solvent‐Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 27, 4349-4352. 2016.
41. Murray, L. J., M. Dincă, and J. R. Long, Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38, 5, 1294-1314. 2009.
42. Dhainaut, J., M. Bonneau, R. Ueoka, K. Kanamori, and S. Furukawa, Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Applied Materials & Interfaces, 12, 9, 10983-10992. 2020.
43. Majewski, M. B., A. W. Peters, M. R. Wasielewski, J. T. Hupp, and O. K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Letters, 3, 3, 598-611. 2018.
44. Jeoung, S., S. Kim, M. Kim, and H. R. Moon, Pore engineering of metal-organic frameworks with coordinating functionalities. Coordination Chemistry Reviews, 420, 213377. 2020.
45. Choi, K. M., H. M. Jeong, J. H. Park, Y. B. Zhang, J. K. Kang, and O. M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano, 8, 7, 7451-7457. 2014.
46. Campbell, M. G. and M. Dincă, Metal–organic frameworks as active materials in electronic sensor devices. Sensors, 17, 5, 1108. 2017.
47. Yuan, S., L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, and P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications. Advanced Materials, 30, 37, 1704303. 2018.
48. Cavka, J. H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130, 42, 13850-13851. 2008.
49. Deria, P., D. A. Gómez Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp, and O. K. Farha, Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 138, 43, 14449-14457. 2016.
50. Wang, R., Z. Wang, Y. Xu, F. Dai, L. Zhang, and D. Sun, Porous zirconium metal–organic framework constructed from 2D→ 3D interpenetration based on a 3, 6-connected kgd net. Inorganic Chemistry, 53, 14, 7086-7088. 2014.
51. Bůžek, D., J. Demel, and K. Lang, Zirconium metal–organic framework UiO-66: stability in an aqueous environment and its relevance for organophosphate degradation. Inorganic Chemistry, 57, 22, 14290-14297. 2018.
52. Shen, C. H. and C. W. Kung, Stable and Electrochemically “Inactive” Metal− Organic Frameworks for Electrocatalysis. ChemElectroChem, 10, 23, e202300375. 2023.
53. Sun, L., M. G. Campbell, and M. Dincă, Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition, 55, 11, 3566-3579. 2016.
54. Hendon, C. H., D. Tiana, and A. Walsh, Conductive metal–organic frameworks and networks: fact or fantasy? Physical Chemistry Chemical Physics, 14, 38, 13120-13132. 2012.
55. Hmadeh, M., Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, and F. Zhou, New porous crystals of extended metal-catecholates. Chemistry of Materials, 24, 18, 3511-3513. 2012.
56. Sheberla, D., L. Sun, M. A. Blood Forsythe, S. l. Er, C. R. Wade, C. K. Brozek, A. Aspuru Guzik, and M. Dincă, High Electrical Conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. Journal of the American Chemical Society, 136, 25, 8859-8862. 2014.
57. Sheberla, D., J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao Horn, and M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16, 2, 220-224. 2017.
58. Kung, C.-W., S. Goswami, I. Hod, T. C. Wang, J. Duan, O. K. Farha, and J. T. Hupp, Charge transport in zirconium-based metal–organic frameworks. Accounts of Chemical Research, 53, 6, 1187-1195. 2020.
59. Goswami, S., I. Hod, J. D. Duan, C.-W. Kung, M. Rimoldi, C. D. Malliakas, R. H. Palmer, O. K. Farha, and J. T. Hupp, Anisotropic redox conductivity within a metal–organic framework material. Journal of the American Chemical Society, 141, 44, 17696-17702. 2019.
60. Ahrenholtz, S. R., C. C. Epley, and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. Journal of the American Chemical Society, 136, 6, 2464-2472. 2014.
61. Murray, R. W., Chemically modified electrodes. Accounts of Chemical Research, 13, 5, 135-141. 1980.
62. Le Ouay, B., M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa, and T. Uemura, Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. Journal of the American Chemical Society, 138, 32, 10088-10091. 2016.
63. MacDiarmid, A. G., “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angewandte Chemie International Edition, 40, 14, 2581-2590. 2001.
64. Huerta, F., C. Quijada, F. Montilla, and E. Morallón, Revisiting the redox transitions of Polyaniline. Semiquantitative interpretation of electrochemically induced IR bands. Journal of Electroanalytical Chemistry, 897. 2021.
65. Tajik, S., H. Beitollahi, F. G. Nejad, I. S. Shoaie, M. A. Khalilzadeh, M. S. Asl, Q. Van Le, K. Zhang, H. W. Jang, and M. Shokouhimehr, Recent developments in conducting polymers: Applications for electrochemistry. RSC Advances, 10, 62, 37834-37856. 2020.
66. Wang, L., X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, and B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. Journal of the American Chemical Society, 137, 15, 4920-4923. 2015.
67. Wang, Y., L. Wang, W. Huang, T. Zhang, X. Hu, J. A. Perman, and S. Ma, A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. Journal of Materials Chemistry A, 5, 18, 8385-8393. 2017.
68. Huang, T. Y., C. W. Kung, Y. T. Liao, S. Y. Kao, M. Cheng, T. H. Chang, J. Henzie, H. R. Alamri, Z. A. Alothman, and Y. Yamauchi, Enhanced charge collection in MOF‐525–PEDOT nanotube composites enable highly sensitive biosensing. Advanced Science, 4, 11, 1700261. 2017.
69. Roman, M., S. Gillani, S. Farid, M. Shakil, R. Ahmad, M. Z. Iqbal, M. M. Faisal, I. Ahmed, and S. Alam, Exalted redox frameworks of Cu-MOF/polyaniline/RGO based composite electrodes by integrating silver nanoparticles as a catalytic agent for superior energy featured supercapatteries. Electrochimica Acta, 400, 139489. 2021.
70. Tsai, M. D., Y. L. Chen, J. W. Chang, S. C. Yang, and C. W. Kung, Sulfonate-Functionalized Two-Dimensional Metal–Organic Framework as a “Dispersant” for Polyaniline to Boost Its Electrochemical Capacitive Performance. ACS Applied Energy Materials, 6, 21, 11268-11277. 2023.
71. Alahi, M. E. E. and S. C. Mukhopadhyay, Detection methods of nitrate in water: A review. Sensors and Actuators A: Physical, 280, 210-221. 2018.
72. Xu, K., Q. L. Chen, Y. Y. Zhao, C. J. Ge, S. W. Lin, and J. J. Liao, Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sensors and Actuators B-Chemical, 319. 2020.
73. Winnischofer, H., S. de Souza Lima, K. Araki, and H. E. Toma, Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Analytica Chimica Acta, 480, 1, 97-107. 2003.
74. Cheng, Y. H., C. W. Kung, L. Y. Chou, R. Vittal, and K. C. Ho, Poly (3, 4-ethylenedioxythiophene)(PEDOT) hollow microflowers and their application for nitrite sensing. Sensors and Actuators B: Chemical, 192, 762-768. 2014.
75. Su, C. H., C. W. Kung, T. H. Chang, H. C. Lu, K. C. Ho, and Y. C. Liao, Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. Journal of Materials Chemistry A, 4, 28, 11094-11102. 2016.
76. Song, Y. D., W. H. Ho, Y. C. Chen, J. H. Li, Y. S. Wang, Y. J. Gu, C. H. Chuang, and C. W. Kung, Selective formation of polyaniline confined in the nanopores of a metal–organic framework for supercapacitors. Chemistry–A European Journal, 27, 10, 3560-3567. 2021.
77. Banerji, A., S. Kirchmeyer, K. Meerholz, and F. Scharinger, Teaching Organic Electronics-Part II: Quick & Easy Synthesis of the (Semi-) Conductive Polymer PEDOT: PSS in a Snap-Cap Vial. World Journal of Chemical Education, 7, 2, 166-71. 2019.
78. Ho, W. H., T. Y. Chen, K. i. Otake, Y. C. Chen, Y. S. Wang, J. H. Li, H. Y. Chen, and C. W. Kung, Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation. Chemical Communications, 56, 79, 11763-11766. 2020.
79. Xie, Y., S.-H. Zhang, H.-Y. Jiang, H. Zeng, R.-M. Wu, H. Chen, Y.-F. Gao, Y.-Y. Huang, and H.-L. Bai, Properties of carbon black-PEDOT composite prepared via in-situ chemical oxidative polymerization. e-Polymers, 19, 1, 61-69. 2019.
80. Selvaganesh, S. V., J. Mathiyarasu, K. Phani, and V. Yegnaraman, Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Research Letters, 2, 546-549. 2007.
81. Wang, Y.-H., C.-H. Chuang, T.-A. Chiu, C.-W. Kung, and W.-Y. Yu, Size-tunable synthesis of palladium nanoparticles confined within topologically distinct metal–organic frameworks for catalytic dehydrogenation of methanol. The Journal of Physical Chemistry C, 124, 23, 12521-12530. 2020.
82. Jahan, M., Q. Bao, and K. P. Loh, Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. Journal of the American Chemical Society, 134, 15, 6707-6713. 2012.
83. Medina-Velazquez, D., B. Alejandre-Zuniga, S. Loera-Serna, E. Ortiz, A. d. J. Morales-Ramirez, E. Garfias-Garcia, A. Garcia-Murillo, and C. Falcony, An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions. Journal of Nanoparticle Research, 18, 1-10. 2016.
84. Wan, J., H. Wang, Z. Wu, Y. C. Shun, X. Zheng, and D. L. Phillips, Resonance Raman spectroscopy and density functional theory calculation study of photodecay dynamics of tetra (4-carboxyphenyl) porphyrin. Physical Chemistry Chemical Physics, 13, 21, 10183-10190. 2011.
85. Chang, S. H., C.-H. Chiang, F.-S. Kao, C.-L. Tien, and C.-G. Wu, Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photonics Journal, 6, 4, 1-7. 2014.
86. Mabbott, G. A., An introduction to cyclic voltammetry. Journal of Chemical Education, 60, 9, 697. 1983.
87. Holtan, M. D., S. Somasundaram, N. Khuda, and C. J. Easley, Nonfaradaic Current Suppression in DNA-Based Electrochemical Assays with a Differential Potentiostat. Analytical Chemistry, 91, 24, 15833-15839. 2019.
88. Chen, H., T. Yang, F. Liu, and W. Li, Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors and Actuators B: Chemical, 286, 401-407. 2019.
89. Sheng, Q., D. Liu, and J. Zheng, A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH)2/multi-walled carbon nanotubes nanocomposites. Journal of Electroanalytical Chemistry, 796, 9-16. 2017.
90. Lin, C. Y., V. Vasantha, and K. C. Ho, Detection of nitrite using poly (3, 4-ethylenedioxythiophene) modified SPCEs. Sensors and Actuators B: Chemical, 140, 1, 51-57. 2009.
91. Han, Y., R. Zhang, C. Dong, F. Cheng, and Y. Guo, Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosensors and Bioelectronics, 142, 111529. 2019.
92. Manoj, D., R. Saravanan, J. Santhanalakshmi, S. Agarwal, V. K. Gupta, and R. Boukherroub, Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor. Sensors and Actuators B: Chemical, 266, 873-882. 2018.
93. Cao, X., Y. J. Xu, and N. Wang, Hollow Fe2O3 polyhedrons: One-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochimica Acta, 59, 81-85. 2012.
94. Dodevska, T., I. Shterev, and Y. Lazarova, An electrochemical sensing platform based on iridium oxide for highly sensitive and selective detection of nitrite and ascorbic acid. Acta Chimica Slovenica, 65, 4, 970-979. 2018.
95. Li, H., J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources, 190, 2, 578-586. 2009.
96. Simotwo, S. K., C. DelRe, and V. Kalra, Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline–Carbon Nanotube Nanofibers. ACS Applied Materials & Interfaces, 8, 33, 21261-21269. 2016.
97. Girija, T. and M. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. Journal of Power Sources, 156, 2, 705-711. 2006.
98. Salunkhe, R. R., S. H. Hsu, K. C. Wu, and Y. Yamauchi, Large‐scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem, 7, 6, 1551-1556. 2014.
99. Lakouraj, M. M., R. s. Norouzian, and M. Tavakoli, Synthesis, Characterization, and Properties of Sulfonated CNT‐Doped Poly (aniline‐co‐carbazole)‐PVA Conductive Films. Macromolecular Materials and Engineering, 308, 7, 2200696. 2023.
100. Huang, Y., X. Zhong, H. Huang, Q. Li, Z. Wang, Q. Feng, and H. Wang, Effect of nafion on the preparation and capacitance performance of polyaniline. International Journal of Hydrogen Energy, 39, 28, 16132-16138. 2014.
101. Kalaj, M., K. C. Bentz, S. Ayala Jr, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, MOF-polymer hybrid materials: from simple composites to tailored architectures. Chemical Reviews, 120, 16, 8267-8302. 2020.
102. Cao, L. and C. Wang, Metal–organic layers for electrocatalysis and photocatalysis. ACS Central Science, 6, 12, 2149-2158. 2020.
103. Wang, Y., L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang, and C. Lollar, Photosensitizer‐Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Advanced Science, 6, 11, 1802059. 2019.
104. Chen, Y. L., C. H. Shen, C. W. Huang, and C. W. Kung, Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Molecular Systems Design & Engineering, 8, 3, 330-340. 2023.
105. Ma, J., A. G. Wong Foy, and A. J. Matzger, The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorganic Chemistry, 54, 10, 4591-4593. 2015.
106. Lu, Z., J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha, and J. T. Hupp, Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 142, 50, 21110-21121. 2020.
107. Hu, C. W., T. Kawamoto, H. Tanaka, A. Takahashi, K. M. Lee, S. Y. Kao, Y. C. Liao, and K. C. Ho, Water processable Prussian blue–polyaniline: polystyrene sulfonate nanocomposite (PB–PANI: PSS) for multi-color electrochromic applications. Journal of Materials Chemistry C, 4, 43, 10293-10300. 2016.
108. Stejskal, J. and M. Trchová, Aniline oligomers versus polyaniline. Polymer International, 61, 2, 240-251. 2012.
109. Kulkarni, V. G., L. D. Campbell, and W. R. Mathew, Thermal stability of polyaniline. Synthetic Metals, 30, 3, 321-325. 1989.
110. Holder, C. F. and R. E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. 2019, ACS Publications. p. 7359-7365.
111. Shen, C. H., Y. N. Chang, Y. L. Chen, and C. W. Kung, Sulfonate-Grafted Metal–Organic Framework─A Porous Alternative to Nafion for Electrochemical Sensors. ACS Materials Letters, 5, 1938-1943. 2023.
112. Shao, L., Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, and N. Wang, A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. Journal of Power Sources, 379, 350-361. 2018.
113. Li, H., K. Gao, B. Mo, Q. Meng, K. Li, J. Wu, and H. Hou, Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes. Dalton Transactions, 50, 9, 3348-3355. 2021.
114. Tang, W. Q., Y. J. Zhao, M. Xu, J. Y. Xu, S. S. Meng, Y. D. Yin, Q. H. Zhang, L. Gu, D. H. Liu, and Z. Y. Gu, Controlling the stacking modes of metal–organic framework nanosheets through host–guest noncovalent interactions. Angewandte Chemie, 133, 13, 6996-7001. 2021.
115. Tang, W. Q., X. Yi, H. Guan, X. W. Wang, Y. W. Gu, Y. J. Zhao, J. Fu, W. Li, Y. Cheng, and S. S. Meng, Bipolar Molecular Torque Wrench Modulates the Stacking of Two-Dimensional Metal–Organic Framework Nanosheets. Journal of the American Chemical Society, 145, 49, 26580-26591. 2023.
116. Dhand, C., M. Das, M. Datta, and B. Malhotra, Recent advances in polyaniline based biosensors. Biosensors and Bioelectronics, 26, 6, 2811-2821. 2011.
117. Chang, Y.-L., M.-D. Tsai, C.-H. Shen, C.-W. Huang, Y.-C. Wang, and C.-W. Kung, Cerium-based metal–organic framework-conducting polymer nanocomposites for supercapacitors. Materials Today Sustainability, 23, 100449. 2023.
118. Le, T. H., Y. Kim, and H. Yoon, Electrical and electrochemical properties of conducting polymers. Polymers, 9, 4, 150. 2017.
119. Xu, J., K. Wang, S. Z. Zu, B. H. Han, and Z. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano, 4, 9, 5019-5026. 2010.
120. Zhang, K., L. L. Zhang, X. S. Zhao, and J. S. Wu, Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 22, 4, 1392-1401. 2010.
121. Pan, L. J., G. H. Yu, D. Y. Zhai, H. R. Lee, W. T. Zhao, N. Liu, H. L. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. N. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 109, 24, 9287-9292. 2012.
122. Udayan, A. P. M., O. Sadak, and S. Gunasekaran, Metal–organic framework/polyaniline nanocomposites for lightweight energy storage. ACS Applied Energy Materials, 3, 12, 12368-12377. 2020.
123. Milakin, K. A., N. Gavrilov, I. A. Pašti, Z. Morávková, U. Acharya, C. Unterweger, S. Breitenbach, A. Zhigunov, and P. Bober, Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications. Polymer, 208, 122945. 2020.
124. Aliev, S. B., D. G. Samsonenko, E. A. Maksimovskiy, E. O. Fedorovskaya, S. A. Sapchenko, and V. P. Fedin, Polyaniline-intercalated MIL-101: selective CO2 sorption and supercapacitor properties. New Journal of Chemistry, 40, 6, 5306-5312. 2016.
125. Dubey, P., V. Shrivastav, M. Jain, K. K. Pant, P. H. Maheshwari, and S. Sundriyal, Facile Synthesis of Pineapple Waste-Derived Carbon and Polyaniline Composite for High-Energy-Density Asymmetric Supercapacitors. Energy & Fuels. 2023.
126. Bao, L. Q., T. H. Nguyen, H. J. Fei, I. Sapurina, F. A. Ngwabebhoh, C. Bubulinca, L. Munster, E. D. Bergerová, A. Lengalova, H. Jiang, T. T. Dao, N. Bugarova, M. Omastova, N. E. Kazantseva, and P. Saha, Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta, 367. 2021.
127. Cho, S., K. H. Shin, and J. Jang, Enhanced Electrochemical Performance of Highly Porous Supercapacitor Electrodes Based on Solution Processed Polyaniline Thin Films. ACS Applied Materials & Interfaces, 5, 18, 9186-9193. 2013.
128. Xu, M., X. Wang, K. Ouyang, and Z. Xu, Two-dimensional metal–organic framework nanosheets grown on carbon fiber paper interwoven with polyaniline as an electrode for supercapacitors. Energy & Fuels, 35, 23, 19818-19826. 2021.
129. Milakin, K. A., S. Gupta, L. Kobera, A. Mahun, M. Konefał, O. Kočková, O. Taboubi, Z. Morávková, J. M. Chin, and K. Allahyarli, Effect of a Zr-Based Metal–Organic Framework Structure on the Properties of Its Composite with Polyaniline. ACS Applied Materials & Interfaces, 15, 19, 23813-23823. 2023.